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PREFACE

Nonlinear soil-structure interaction is a phenomenon associated with energy influx and
efflux through a soil-structure interface. The energy accumulated in a structure is given
as the difference between the energy influx and efflux, and is certainly responsible for
compound fracture of the structure. Structures in active seismic zones may experience a
number of earthquakes during their service lives. All events that a structure has
experienced are responsible for continual accumulation of the damage, and thus, the
cumulative energy is, if measured, an appropriate index for evaluating the remaining life
of a structure. Needless to say in this discussion, both behaviors of a structure and its
subsoil are to be treated with equal rigor in order for the energy flow to be rationally
estimated.

Model experiments on a shaking table are quite useful for identification of important
phenomena and verification of predictive theories regarding dynamic behavior of a
prototype structure subjected to an earthquake, and sensors densely arranged on a
structure model may allow us to discuss the compound fracturing of the structure model
in terms of the energy that is accumulated in it. However, a shaking table is, in general,
controlled so that it follows closely the input free-field motion, while in reality, a
structure interacts with its foundation on or in the ground, and responds differently. This
interaction thus causes the motion of the ground at the structure’s base to deviate from
the free-field motion. This effect may be partly incorporated by filling up a bin on the
table with actual prototype soil and by putting a model on it. This method is particularly
useful when non-linear features of the soil in the vicinity of a structure must be
considered. But the process of preparing a soil model is rather difficult; and if prepared,
it still cannot alow for the effect of wave-dissipation into an infinite soil medium
existing in thefield.

Shaking tables of many sizes have been used so far. Some are quite large, allowing
models with dimensions of several meters to be shaken. However, they are not always
large enough for all structural models of interest to be tested. Within the finite base size
of a shaking table and within the limit of its dynamic loading capacity, not the whole
structure but just one part of it, like some devices for vibration reduction, can be tested.
In this case also, the input motion to the model’ s base must be affected by the presence
of the model.

The purpose of this project was to develop a method for controlling a shaking table so
that the soil-structure or base-structure interaction effect is incorporated. In order for the
interaction effect to be reflected in a shaking table test, the signal equivaent to the



further displacement induced by the interaction is added in real-time to the input ground
or base motion. This method, therefore, requires a device that can generate the signals
corresponding to the base-structure interaction motions. To all intents and purposes, the
expression of base stiffness must be simplified enough for the device to loose no timein
responding to the input force, and producing the base-structure interaction motion.

Asisthe case of many reports, this report was an outgrowth of different peer-reviewed
papers published in both domestic and international journals. Chapters in this report are,
thus, based on these papers. However, they were so arranged that the outline of this
study, and eventually, the remaining problems would be brought in full relief.
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INTRODUCTION

When a structure is subjected to a ground excitation, it interacts with its substructurei.e.,
foundation and soil. In other words, the motion of ground is aso altered because of the
vibration of the structure. Due to the semi-infinite extent of soil, this interaction
provides a mechanism for energy dissipation, called radiation damping, through soil as
outwardly propagating waves. For the shaking table tests conducted without taking the
interaction into account, the input energy is totally consumed by the structure producing
guite conservative results. On the other hand, tests conducted using physical ground
model to incorporate associated non-linearity inherit two fold demerits. Firstly, the
finite dimension of the ground model fails to provide radiation damping and thus
yielding conservative results. Secondly the weight of the ground model causes an extra
burden on the performance of the shaking table restricting superstructure models to a
smaller size. Hence, when the observation of the behavior of a superstructure is the
main concern, neither of the above methods seems to be satisfactory.

With a view to incorporate the interaction between soil and structure without using
any physical ground model, Konagai et a. (1997~1998) introduced a new method for
shaking table tests. In their method, appropriate soil-structure interaction motions are
added to free-field ground motions to simulate soil-structure interaction effects. The
method considers radiation damping which, in general, causes the total damping of a
soil-structure system to be greater than that of the structure itself. Thus the
incorporation of soil-structure interaction effects in a shaking table test |eads to reducing
the demands on the capacity of shaking tables. This dynamic interaction is a
phenomenon associated with the influx and efflux of energy which is generated by the



2 INTRODUCTION

earthquake excitation and transmitted through the soil-structure interface. It is noted that
the difference between the influx and efflux is exactly the energy stored up within a
structure, and thus, is closely related to the extent of damage to the structure. If these
interaction effects are rationally ssimulated in shaking table tests, one will obtain the
necessary pieces of information for interpreting the failure processes of prototype
structures in terms of energy.

The method was initially developed with the assumption that soil behaves linearly. In
the present report, the method is extended to take the ‘far field” soil non-linearity into
account through an equivalent linear approach. The non-linearity produced in the
vicinity of foundations, which is usually associated with large strain and separation
between soil and foundation, has not been considered in this study. In this method the
dynamic soil parameters are varied in real time by means of a digital signal processor.
The method, on one hand, captures the non-linear soil behavior of softening and
re-hardening during the course of an earthquake, and on the other hand, allows testing
of a bigger superstructure model by obviating the need of a heavy physical ground
model.

This report introduces in its first half (Chapters 1~3) simple descriptions of
foundation stiffness parameters in terms of a limited number of frequency-independent
parameters: the descriptions allowing soil-structure interaction motions to be ssimulated
on a shaking table. The latter haf (Chapter 4) then presents a method for simulating
soil-structure interaction effects in shaking table tests, in addition to some pieces of
equipment contrived for better control of shaking tables. Simple examples of
soil-structure interaction simulations using the present method are also given in this
chapter.

In the course of this study, the idea of treating a pile group beneath a super-structure
as a single upright beam has yielded BASPIA (Beam Analogy for Soil-Pile group
Interaction Analysis), a program alowing soil-pile group interaction analysis to be
made with less time and effort. BASPIA includes TLEM (Thin-Layered Element
M ethod) as a solver that describes a soil stratum as an infinite stratified medium with
the inclusion of a cylindrical hollow, in which a foundation is fitted. BASPIA with the
restricted version of TLEM for WINDOWS is a freeware that can be downloaded from
the following URL.:

http://norway.iis.u-tokyo.ac.jp/BASPI A.htm
The manuals of BASPIA and TLEM (Ver. 1.2) are provided in APPENDI X 3.
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Chapter 1

SIMULATION OF SOIL -STRUCTURE
INTERACTION EFFECT ON SHAKING TABLES

1.1. TWO PRIMARY CAUSES OF SOIL-STRUCTURE INTERACTION

In this study, a soil-structure system is divided into two substructures, the
superstructure and the unbounded soil extending to infinity; the latter includes an
embedded foundation as illustrated in Figure 1.1, because a shaking table represents
exactly the latter substructure of soil. The multi-step method is used to describe two
primary causes of soil-structure interaction - the inability of the foundation to match the
free-field deformation, and the effect of the dynamic response of the superstructure on
the movement of its supporting soil-foundation system. In the lower substructure of soil,

'~

cut in half at the
base of
superstructure

Shaking ;!
table =~

Figurel.l Two primary causes of soil-structure interaction
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an earthquake will cause soil displacements, {uf} . The foundation embedded in this

soil deposit, however, will not follow the free-field deformation pattern. This deviation
of the displacements from the free-field soil displacements, {u f} , 1S denoted by {us} .

The mass of the super-structure then causes it to respond dynamically, and the forces,
{0} . transmitted to the lower substructure of soil and foundation will produce further

deformation of soil, {uR} (inertia interaction), that would not occur in a fixed base
structure. Thus, the displacements of soil, {u} , are eventually expressed by the

3 =(u) 4o ¢4 @

Consider the case that a foundation has two degrees of freedom in sway and rocking
(x, 8) a the base of its super-structure as illustrated in Figure 1.1. The interaction
forces, {p} (:{pX pe} T), from the super-structure cause the inertia interaction

following equation as.

motions, {u R} , in the frequency domain to be:

EUES: H, (9 ng(S)%pr (1.2)
[P:D H"@((S) Ho (S) P60
where,
[H . (9) er(s)Dz[H] (1.3a)

H-IBX(S) Hee(S)E
isthe flexibility (compliance) at the top of the foundation, and
s=ild (1.3b),
inwhich i =+/-1 and w isthe excitement circular frequency. In the present method,
a shaking table’s motion is controlled directly following the above-mentioned process of
soil-structure interaction.

In the present method, the motion of a shaking table is controlled directly following
the actual process of soil-structure interaction. Figure 1.2 shows a schematic view of
the set-up of a shaking table test, in which a superstructure model is placed directly on
the table without a physica ground model. Soil-structure interaction effects are
simulated by adding appropriate soil-structure interaction motions to free-field ground

motions at the shaking table. In the simulation, first, the transducers at the base of the
foundation pick up the signals of the base forces, p, and p, in sway and rocking

motions, respectively. These two amplified signals are then applied to the circuits H,,,
H,, H,, and H, to produce the outputs corresponding to the soil-structure

interaction motions, ul and ug . The output signals are then added to the signals of
the base input motions, u! +u® and u, +uj, to produce the signals of foundation
motions, u' +u+u® and u, +us +uf. The method is, thus, based on the premise
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structure model

force transducer

amplifier
P R
[\ /]

’_l_‘ Ho Hox Heo Hog
controller \&

f,.s R\a
UX+UX +UX

f S
j O Uy +Uy

f. s
uf +u§+u§\§ 0 Ug +Uyg

Figure. 1.2 Present setup in ashaking table test for soil-structure interaction simulation

»

Figure 1.3. Modeling of a pile-group as a simple-damped oscillator

that u' +u’ and u, +u; are known beforehand as the base input motions. The
signals of the foundation motions are finally translated into the shaking table motions by
the shaking table controller.

This method, therefore, requires a device that can generate signals identical to the
transient motion of its base on a soil medium of infinite extent. To al intents and
purposes, the expression of soil stiffness, [k] (= [H]_l), must be simplified enough for
the device to loose no time in responding to the input force {p} , and producing the
soil-structure interaction motion, {uR} . As will be shown later, the stiffness function
for a sway motion of a pile-cap, for example, can be closely approximated by a

simple-damped oscillator with spring, dashpot and mass parameters, K, C and M
(Figure 1.2). The parameters K, ¢ and M are varied with time to reflect the
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non-linear behavior of soil. In order to obtain the appropriate variation of these
parameters with time a non-linear analysis of ground response is necessary. From the
non-linear ground response analysis, it is possible to obtain the non-linear stress-strain
histories at different points of the ground profile for a particular base excitation. The
non-linear stress-strain histories are then idealized to obtain histories of equivalent
linear soil parameters like secant shear modulus and damping ratio. Using the
equivalent linear soil parameters of a particular time, a linear foundation-soil interaction
analysis is performed to obtain the appropriate values of the parameters of the stiffness
function at that time. Thus by performing similar analyses repeatedly to cover the total
duration of the excitation, variations of these parameters with time can be obtained.
During shaking table tests the parameters of the stiffness function are changed in real
time according to the derived variations by means of a digital signal processor. The
steps of the present method are discussed in detail in Chapter 4 (4.4.3, p.61~).

1.2PHYSICAL INTERPRETATION OF DYNAMIC SOIL STIFFNESS

As has been suggested above, a flexibility or stiffness function for the motion of a
foundation embedded in or resting on the lower substructure of soil can often
approximated by a simple oscillator with an inclusion of a viscous damper. A simple
analysis will be sufficient to illustrate a physical interpretation of this viscous damper.

Observation of wave fronts radiating from a foundation offers important insights into
soil-structure interaction. Thisis also a very useful way to examine simple expressions
of soil-structure interaction. Konagai et al. (1987) used a specia experiment method to
directly observe the wave front radiating from a foundation subjected to an impulse
(Figure 1.4). In their method, a model foundation is put on, or embedded in a soft and
transparent soil model which is made of urethane gel with a thin gelatin plate
sandwiched upright in its middle. The elastic constants of the gelatin plate are amost
identical to those of the surrounding urethane gel.  Since the gelatin has an extremely
high photo-elastic sensitivity compared with the urethane gel, the gelatin plate allows
the visual observation of the radial propagation of shear waves in the vicinity of the
foundation. A vertical impulse was applied to a model of arigid surface disk. Figure
1.5 shows a snap shot of the wave front radiating outwardly into the homogeneous
ground model. The hemispherical shape of the wave front suggests that the wave decays
as it travels away in the radia direction, r. This wave with the velocity c, thus, will
presumably be approximated by:
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u® =q(r) O (r —ct) (1.4)
where, q(r) describes how the wave attenuates as it travels away. On the soil-disk
interface (r =r,) having the contact area, A, shear force, p, isroughly described as:

R
p A= - A 2o
0 or O-,

inwhich u isthe elastic modulus of soil.

-Au—u® —Eu 0

[dq of
-Aug—f +qg—

“Ddr qdr%

Ldq qdfl
-Au—f ——— 15
AuDdr c ot %:ro (19

U

g
L ¢ O

The force p thus turns out to comprise two components proportional to the

displacement, u®, and the velocity, u®, of the disk, respectively. Equation (1.5) is thus

urethane

N——o———

gelatin plate

observed fringe

A suuden discharge of a capacitor through a
solenoid coil serves as an inpulsive energy source

Figure. 1.4. Visualization of wave fronts
[Konagai et a., 1987]

A jelly-like soft soil model of urethane with
an upright and flexible gelatin plate
sandwiched in its interior was prepared in an
acrylic box. An impulse was then applied to
a foundation resting on or embedded in the
soil model. Since photo-elastic sensitivity of
gelatin, when compared with that of
urethane, is extremely high, cross sections of
sharp wave fronts induced by the impulse
and transmitted through the 3D soil model
are clearly visualized on the inner plane of
gelatin through a polariscope arrangement.

[Konagai et al., 1987, 1998]

Figure 1.5. Hemispherical wave front from arigid disk

=

url
L

Figure. 1.6. Semi-infinite soil rod
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rewritten as:
p=K DR +C ot (1.6)
where,
K={-Aug'(r)/a(r} ., (1.72)
Cc={Auq(r)/g (1.7b)

Since q(r) decreases as r increases, —(Q'(r) in Equation (1.7a) is noted to be a
positive value, and consequently, both parameters, K and C are positive. Equation
(1.6), thus, implies that the stiffness of the soil-disk system is mechanically identical to
an assembly of the spring K and thedamper C arranged in paralldl.

A simple semi-infinite soil rod with a constant cross-section (q(r) = q(r,) =1, Figure
1.6), offers further clearer physical insight into the reaction from the soil. Only shear
deformation is allowed to take place in thisrod. The soil stiffness at the end of therod is
simply given by:

_HA
k= T (1.8)
with L as the deformed length of the rod. For a static load applied to the end of the

rod, the entire length of the rod is deformed (L = ), and eventually:
k=K="—= (1.93)

Equation (1.9a) is consistent with Equation (1.7a) because —q'(r) is noticed to be 0
for this rod of constant cross-section. When a dynamic load p causes the rod’'s end to

be driven with the velocity uR, the entire length of the rod does not move all at once
within a finite time t . At this particular time t, displacement u® and the deformed
rod length L are u™t and ct, respectively. The reaction force p is thus given as:

p=k® =%A0Rt :“—CAuR =Cuf (1.9b)

It is obvious that Equation (1.9b) is consistent with Equation (1.7b) because the
specific energy does not decrease as the wave travels through the rod of constant
cross-section calling for q(r) =q(r,) =1.

An added mass parameter, M, if necessary, can be attached to the simplified model
for better approximation of the soil stiffness, leading to a dlight modification of
Equation (1.6) as:

p=MIf+K @~ +C @~ (1.10)
The soil stiffnessis thus written in the frequency domain as:
kz(K—a)zM)+ia£ (1.11)

implying that the stiffness is eventually a complex function of circular frequency w. Its
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real part is a downward open parabola to the right, whereas its imaginary part increases
linearly with increasing frequency.

1.3 SUMMARY

The above expression for the soil stiffness may be based on oversimplified conditions,
but gives us an idea that the stiffness for any of lateral, vertical or rotational response
mode will be approximately described by a limited number of simple
frequency-independent parameters. It is, however, certainly necessary to have a rational
numerical tool alowing rigorous stiffness parameters to be examined, and to be
compared with the ssimplified expressions. Especialy, thorough discussions on piles
grouped beneath super structures are essential in the course of this study; the discussion
followsin Chapters 2 and 3.
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Chapter 2

SIMPLE EXPRESSION OF THE DYNAMIC
STIFFNESS OF GROUPED PILES

2.1INTRODUCTION

Piles, grouped beneath a superstructure, interact with the surrounding soil during an
earthquake, and the dynamic pile-soil-pile interaction often affects the motion of the
superstructure to a considerable extent. Straightforward evaluation of the pile-soil-pile
interaction, however, is cumbersome especially in dealing with tens or hundreds of piles
grouped together. Hence a ssimplified approach for the evaluation of such dynamic
pile-soil-pile interaction is highly desirable for the purpose of treating the dynamic
behavior of an entire soil-foundation-structure system. Some research has been carried
out with the objective of developing such a simplified approach. Attempts include the
Ring-Pile method [ Takemiya, 1986] and Closely-Spaced-Plates model [Ohira and Tazo,
1985]. In these methods, respectively, piles with the soil caught among them are
re-grouped into several concentric cylinders (piles arranged in concentric circles) and
into soil-pile-striped upright plates, allowing close evaluation of interaction effects to be
made with less time and trouble. This chapter presents a further ssmplified approach in
which agroup of pilesisviewed as a single equivalent upright beam.

Careful examination of the deflections of grouped piles reveals that most piles are
indeed flexible in practice in the sense that they do not deform over their entire lengths.
Instead, pile deflections become negligible below their active lengths. With the active
lengths provided for different soil-pile systems, it is shown in the latter half of this
chapter that pile-cap (grouped-piles-head) stiffness can be approximated in terms of the
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mass, damping and stiffness parameters; the parameters are invariant of frequency and
are dependent only on the mechanical properties of soil and pile. The method presented
in this report requires real-time manipulation of soil-structure interaction parametersin
accordance with the development of non-linear features of soils and piles. The present
simple expression of pile-cap stiffness, thus proves to be useful despite the availability
of efficient numerical programs for analyzing pile-soil-pile interaction.

2.2EQUIVALENT SINGLE UPRIGHT BEAM

In discussing the equivalent upright beam, straightforward evaluation of pile-soil-pile
interaction is first necessary to provide rigorous solutions. Based on the numerical
scheme presented by Tajimi and Shimomura [Thin-Layered Method, 1976] that allows
soil-embedded foundation interaction effects to be rigorously evaluated, a numerical
program “TLEM”(Ver. 1.1) has been developed for soil-pile group interaction analyses
[Konagai, 1998d]. The Thin-Layered Element Method is a method for describing soil
strata rather than for foundations. In this method, a soil deposit is treated as an infinite
stratified medium with the inclusion of a cylindrical hollow in which the foundation is
fitted. The piles are assumed to be upright Timoshenko or Beronoulli-Euler beams. The
evaluation of pile-soil-pile interaction effects in this program is based on the
superposition method that was originally proposed by Poulos [1968, 1971]. In this
approximation, only two piles are considered in the formulation of a global flexibility
matrix, and other piles’ effects on these two piles are totaly ignored (Figure 2.1).
Kanya and Kausel [1982] have shown that the superposition scheme gives reasonable
results not only for static loads but for dynamic loads as well.

active pile
= X
- /\e
s Peasa,
passive pile
y

Figure2.1 Activeand passive piles
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In contrast to the above approach, the present single upright beam is a composite of
n, pilesand the soil caught among them embedded in a horizontally stratified infinite
soil deposit with material damping of the frequency-independent hysteretic type (Figure
2.2). Following the TLEM assumption, the soil deposit overlying its rigid bedrock
should include a cylindrical hollow of radius R,. The cross-section, 7R,*, of this
hollow is assumed to be identical to the beam’s cross-section A; enclosed with the

broken line circumscribing the outermost piles in the group (Figure 2.2a). The motion

of the hollow is assumed to be compatible with that of the beam. The soil-pile

composite together with its exterior soil is divided into n_ horizontal slices as shown
in Figure 2.2. The following assumptions are adopted to derive the stiffness matrix of
the equivalent single beam:

(1) Pile elements within a horizontal soil dlice are all deformed at once keeping their
intervals constant, and the soil caught among the piles moves in a body with the
piles.

(2) Frictional effects due to bending of piles (externa moments on each individual pile
from soil) are ignored.

(3) Thetop ends of pilesarefixed to arigid cap.

(4) All upper or lower ends of the dliced pile elements arranged on the cut-end of a soil
glice remain on one plane (Note this assumption does not necessarily mean that
each pile's cross-section remainsin parallel with this plane. See Figure 2.2b).

cenltroid
6o A
L
.90
I .
Role— W ceptr0|d
r _{ 1 |:L] 7-/| Rn= LVY
J ! ! iy~ — 4
o B - n
— 1
) — remain onone plane
np piles
(a) soil-grouped piles system (b) dliced elements

Figure2.2 Assumptionsfor evaluation of equivalent single beam
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With assumptions (1) and (4), there are only two degrees of freedom for each cut-end of
all dlices of the soil-pile composite, namely, sway and rocking motions respectively
designated as {u} (:{ul u, - UNL}T) and {W} (:{Wl W, - WNL}T) (Figure
2.2b). The rocking motions are expressed in terms of the anti-symmetric vertical motion
{w} at the outermost edge (r = R,) of the equivalent beam with respect to the beam’s
centroid. In sway motions, al n, piles are equally displaced (assumption (1)), causing
the bending stiffness, EI , of the equivalent beam to be smply n times as large as

the bending stiffness of an individual pile. Assumptions (3) and (4) imply that axial
motions of the piles control the overall anti-symmetric rocking motion of the equivalent
beam just as reinforcements in a concrete beam do. Therefore, another bending stiffness
parameter, EI® is introduced to describe the rocking motion of the beam. This
stiffness parameter EI © is evaluated following the same procedure as that used for the

evaluation of bending stiffness of a reinforced concrete beam (See APPENDIX 1).
Lateral external forces {p} and moments {M} are finally described in matrix

notation in terms of {u} and {V\& as specified in Equation (A12) in APPENDIX I:

g g G LIo 1] . Istcolumnof [L]O /R, and O

| u [
pr E 0 zerosfor other columns 5
RN E R P PP P PP PP PP PRTPTPEPR 0] (21)
MO Hstrow of [D] L] /Rand . [Q] with D;? added to the R
ERO E fzerosfor other rows ' upper - left corner A

where, [L] : [D] and [Q] are assembled global matrices corresponding to the
individual layer parameters of 1/h; (h, = thickness of the j-th layer), h, /El and
EIG/ROZhj, respectively, (See Equations (A2), (A4) and (A10) in APPENDIX |
defining [L] , [D] and [Q] , respectively).

“TLEM” has been upgraded for evaluation of the behaviors of an equivalent single
beam (Ver. 1.2). Figure 2.3 shows pile cap stiffnesses k,, for sway motions of 2x2
and 3x3 steel pile groups (Table 2.1) plotted as functions of frequency. The results for
the equivalent beams are shown as open circles. Each pile group is embedded in the
same homogeneous soil deposit (Table 2.2) equally divided into 20 slices. Downward
dips in these plots of k, occur at essentially the resonance frequencies of the soil
stratum for vertical shear wave propagation. As awhole, however, every real part of the
pile cap stiffnesses decreases slowly as the frequency increases, whereas its imaginary
part representing the damping of a soil-pile group system shows a general upward trend
to the right. The curves for the equivalent single beams agree well with rigorous
solutionsfrom “TLEM” (Ver. 1.1).
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Table2.1 Parametersfor steel piles

E, (tf/m°) o (t/m°) ro(m) Thickness (m) Length (m)
2.1x10’ 7 0.3 0.0089 20
Table2.2 Parametersfor soil

o (t/m°) v, (M/s) v
15 80 0.49
4.0 - 2 X 2p|IeS i 4.0 3 X 3p||es
[ ] ;d ] o0 o
J T rigorous solution LA
301 ™ S™| o equivalentbeam |® ® ®
€ = | red part
£ real part £
< <
S %07 < S 207 s/d=25
I &
Q )
% 1.0 %1.0—
?@_ \_imag. part -§_ N\ imag. part
£ E -
— 0.0 ————T—1—— 0.0

'10 OI246I2|3I1|O
Frequency (Hz)

0 2 4 6 8
Frequency (Hz)

Figure2.3 Variations of stiffness parameters for sway motions of pile groups

Assumption (1) taken in this chapter to derive the dtiffness matrix of the
equivalent-upright beam (Equation (2.1)) implies that the spacing between piles, s,
should be within a certain limit. To investigate this constraint on the spacing between
piles, the results of the program “TLEM” (Ver. 1.2) were compared with the rigorous

results obtained from “TLEM” (Ver. 1.1). Here, hollow cylindrical steel piles (Table
2.1) embedded in a homogeneous soil with the density p and the shear wave velocity

v; (Table 2.2) were considered. The variations of the ratios between approximate and
rigorous solutions with respect to normalized frequency ws/v; are shown in Figure
2.4 for three different values of spacing (s/d =25 s/d=3.33 and s/d=50). For
a wide range of cases examined, “TLEM” (Ver. 1.2) is found to produce insignificant
error below a certain limit of spacing, s/d < 3. Below this limit, however, it is noted
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that the error can yet become significant as the non-dimensional frequency increases
beyond a certain limit (See thick linesin Figure 2.4 for large number of piles).

An earthquake causes the free-field ground motion {uf Cw f}T in which vertical
displacement vector {wf} can be ignored in many of the practical cases encountered.

The pilesin this soil deposit, however, will not follow the free-field deformation pattern.
This deviation of the displacements from the free-field soil displacements is denoted by
{uS : WS}T . Equation (2.1) is also used to evaluate effective foundation input motion

ur+us : w'+wy' . The effects of soil-embedded-foundation kinematic
interaction are portrayed in the form of two kinematic displacement factors in sway and
rocking motions

f s f s S
T =d Tl oW W oW
e,sway f ’ e,rocking f f

U, U U

(2.24), (2.2b)

plotted as functions of frequency. In Equation (2.2b), the vertical component of
free-field ground motion wlf isignored.

1.0 =2
0.8
==
O| O
s[5 06
59
3 3 04
%S s/d=25
= 02 v s/d=33
———————————— s/d=5.0
0.0 : . ,
0.0 0.5 1.0

nondimens onél frequency (= ws/v,)

Figure2.4  Variation of ratios between approximate and rigorous
solutions with respect to normalized frequency ws/ v,
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Figure 2.5 shows the kinematic displacement factors of a 2x2 PC pile group plotted
as functions of non-dimensional frequency ws/v,; (s/d =2, See Tables 2.3 and 2.4),
and they are in good agreement with rigorous solutions by Fan et al. (1982).

It is again to be remembered that the piles behaving in accordance with assumption
(1) are completely equal with each other not only in their deformations but also in
lengthwise distributions of internal force and moment. The dynamic pile-soil-pile
interaction effects are thus excluded. Even for a static loading, any discussion based on
the assumption does not reflect the fact that outermost piles sustain heavier loads than
those on inner piles (static pile-soil-pile interaction). Yet, the present single upright
beam, as has been shown above, satisfactorily approximates the motions of a pile group
with a reduced number of parameters. These parameters allow the stiffness parameters
of a pile cap to be described in a further simplified manner; a discussion of lateral
trangdlation follows in Section 2.3.

Table2.3 Parametersfor piles
E,l,(tfmd) o (t/m°) ro(m) length (m)

2.4x10° 2.0 0.5 15

Table2.4 Parametersfor surface soil deposit

p (t/m?) v; (M/s) v Thickness (m)
1.75 100 0.40 20
wn 1.5+
5 after Faneta.  sway
§ TLEM
e o . i
é - ® sway (E,/E= 1000) °
o g ® rocking (E/E= 1000)
B 5057 O sway (E/E= 10000)
© % O  rocking (E/E_=10000)
O 7 — °
® =g = ? =02 ¢
&  000--0==FN | =0
é rocking
00 01 02 03 04 05

normalized frequency (w d/v;)

Figure2.5 Kinematic displacement factors of pile groups
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23. ACTIVEPILE LENGTH AND PILE CAP STIFFENESS

2.3.1 Active pile length

In practice, most laterally loaded piles are ‘flexible’ in the sense that they do not deform
over their entire length L. Instead, pile deflections become negligible below an active
length L, (Figure 2.6). This length depends on how stiff the pile is in comparison

with the surrounding soil. In engineering practice, Chang's formula is widely used; in
thisapileis supported by discrete soil springs K, d, and the characteristic parameter is

introduced as B =4/K,d/4El with K, designating the coefficient of subgrade
reaction and d the pile diameter. The length given by 1/ is thus directly relevant to
the active pile length L, . When a soil is treated as an elastic continuum, however, it is
to be recognized that K, is not an inherent constant in the soil, but rather dependent
on d. Inaddition, the active pile length is more rationally evaluated by replacing K, d
with the shear modulus of soil . Some formulas for rather extreme soil profiles have
been presented by Randolf(1981), Velez (1983) and Gazetas (1983), and in general, L,
Is closely related to the following parameter L,:

L, = F (2.3)
u

where, EI = bending stiffness of the pile, and y = shear modulus of soil
(representative value). The activelength L, isthusgiven as:

L, =a,l, (2.4)
with the parameter a,, reflecting different soil profiles. For an n_ pile group, El in
Equation (2.3) will presumably be replaced with EI (=n_ E I ) specified by
Equation (A5) in APPENDI X I.

R

0

Figure2.6 Activelength of pile
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2.3.2 Pile cap stiffness
It is assumed that only the soil above the active pile length, L,, is deformed as

shown in Figure 2.7a. The upper soil is then divided into vertical soil columns. Given
the prescribed vibration mode ¢ (z/L,) that satisfies ¢(0) =1 and ¢(1) =0, these

columns can be replaced with simple-damped oscillators. Reducing the cross-section of
each soil column, the soil deposit above L, is modeled by an infinite plane supported
by Winkler-type springs (Figure 2.7b). Lame's constants A, , u,(H,= shear
modulus) and mass density p,, of the soil plane and Winkler-type spring constant k,
for the model are expressed intermsof ¢ as

A = MWL) dz, 1, = fu(z)(w(z/m)zdz, oy = [POW(IL) az

a0 k= ) e 25250

A frequency parameter, w,, isintroduced herein as:

kP
w, = |+ (2.6)
Py
For a homogeneous soil, parameters A, u, and p, in Equations (2.53)-(2.5c) are
rewritten as
A, =Aa,L,, M, = Hagl, and p, = pa,L, (2.78)-(2.7¢)

with  a, = [, Q))&

Even for inhomogeneous soils too, similar expressions may be derived with A, u, and
p interpreted as representative values of A(z), u(z) and p(z), and the parameter
a, portraying different soil profiles.

R,
Ao tp Mg
W/ ﬁ |

(a) Verticaly sliced soil above L, (b) Equivalent model
Figure2.7 Soil deformation

\/
Z
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The expression of soil stiffness, k,, for the lateral motion of a massless body

embedded in the soil planein Figure 2.7b is completely identical to that given in Novak
et al. [1978] regardless of the presence of Winkler-type springs Kk, i.e.

2 4K (by)K, (ay) +a,K, (10) Ko (8g) + by Ko () K, (a5)

by Ko (05) K, (85) + 8, K, (b)) K, (85) +byag K, (b ) K, ()
where K, and K, are modified Bessel functions of the first and second order,
respectively. Both a, and b, are normalized circular frequencies. As shown in

k, =11, 8, (2.8)

APPENDIX 11, the only difference from Novak’s solution, owing to the presence of
Winkler-type springs k, appears as an inclusion of the frequency parameter w, in

a, and b, as

Ooo Of
a, =Ry 2Ry with = |1-3%90 (2.92)-(2.90)

inwhich w isthe circular frequency, and
Vi =, / M,/ p, (=transverse wave velocity in the plane) (2.9d)
v, = \/(A o +21,)/ p, (=longitudina wave velocity intheplane)  (2.9¢).

Since a, and b, arerespectively functions of Vr and va,Equation (2.8) isinturn

a function of the Poisson’'s ratio v. The expression of Equation (2.8) for a Poisson’'s
ratio equal to 0.5 is obtained by taking alimitas v - 0.5 in Equation (2.8), i.e.:

ks =2S" +mw? (2.10)
where m,(= peroz) IS the soil mass of the same volume as the cylindrical hollow in
the soil plane, and

_—— aoKl(ao) 211
S =am Ko(ap) ( )

Table25 Vauesof & and &,

Poisson’sratio, & &,
%

0.50 2.000 1.0000
0.47 1831  0.5336
0.45 1.741 0.3740
0.43 1.667  0.2628
0.40 1580  0.1428
0.35 1476  0.0352
0.25 1.351 0
0.20 1.311 0
0.10 1.252 0
0.00 1.213 0
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It is found that the stiffness k, for any Poisson’'s ratio other than 0.5 can be

approximately expressed in the same form as Equation (2.10) but with a small
modification [Nogami and Konagai, 1986], i.e.:

ke =& (V) B +¢&,(v) nw? (12)
where, &, (v) and &, (v) are functions dependent only on Poisson’s ratio v. The
vaues &,(v) and &,(v) aregivenin Table2.5.

Konagai et al. [1992, 1998b] have shown that assuming plane stress condition over
the entire extent of the soil plane allows k, to approximate closely the rigorous
solution of the soil stiffness, and thus, Poisson’s ratio v in Equation (2.12) must be
replaced with v" for a plane-stress medium, which is expressed as:

A
YA P (2.13)
2(A, +H,)
. 2A
where, A, - oHp (2.14)
AP+HP

It is noted that v' ranges from O to 1/3, and thus, & (v') in Equation (2.12) is
completely equal to zero. Equation (2.12) is then rewritten as;
ke =& (V') S (2.15)
The function K,(a,)/K,(a,) isapproximated by 1+0.4/a,, when the absolute value
of a, islarger than 0.01 [Konagai and Nogami, 1998a]. This simplification |eads to:
_ « 89K (ap)
=2 & (V) e 5

Two limiting cases of w -~ 0 and w - « are addressed herein. For the static case
(w00), n of Equation (2.9c) approaches 1. Replacing w, and v, in Equation

027, & (V)a, (+ 04/ a,) (2.16)

(2.9a) with those specified in Equations (2.6) and (2.9d), respectively, non-dimensional
frequency a, inthestatic caseisexpressed as:

[k
= | e 2.17
3 upRo (2.17)

Substituting into Equation (2.17) Equations (2.5d) and (2.5b) which specify k, and
M, , respectively, Equation (2.17) isrewritten as:

_a, Ry
=229 2.18
2L (2.18)

a

where, a, = [ ‘gg)%dz with ¢ =z/L,

Equation (2.16) is thus simply written as:
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k, D2mEa,ul, %% + 0.4%: i, E’m&kaz % +0.81Ea, % (2.19)
1 a a
For the dynamic case (w — ), non-dimensional frequency a, converges on:
a =i 2ia (2.20)
Vi,
Equation (2.16) is thus approximated by:
k, OuL, (i 2, a, (a+0.87€,a,) (2.21)
From Equations (2.19) and (2.21), soil stiffness will presumably be approximated as:
U
k, Oul, %n{kaz Iiﬁ +0.8mé.a, =1 2mé a, [Ag (2.22)
a U

Even without the soil above the active pile length, the pile group exhibits its own
stiffness, k, (Figure2.7b), which isdescribed as:
El L Y a
ky Doy—5 =a,— ==L, (2.23)
L a,

La a
where, a, :J’ ;dé(f ) gdZ

Both k, and k, sustain the mass m, of the embedded pile group with soil caught

among the piles. Thismass m, is approximated by:

La
m, O [pJRY(2)*dz= poR,"La, (2.24)
0
Therefore the overall stiffness k,, of the pile cap for sway motion is given as:
Ky = kg +ky —myw? (2.25)
From Equations (2.22), (2.23) and (2.24), Equation (2.25) is rewritten as:

oo R a, [ .
k., OuL, (prié a, T +0.8méa, +— H+i 2réa, [a-ma, [@"0  (2.26)
£E a o H

Substituting Equation (2.3) into Equation (2.26), one obtains:

0 0

g a, R a, (8, =
k, OuL, et néa, T +0.8mé a0, +— HI+i a0, [@-maa, [a°0 (2.27)
a H

It is now obvious that k, in Equation (2.27) has the following simple form with
frequency-independent stiffness k,, and damping and mass parameters c, and m,

respectively:
k., Ok, +ilE, [@a—m, @& (2.28)

where,
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:_E _ Cl% i, :_Lo - ¢, and % =c, (2.298)-(2.29¢)
0 0 0 0

: a
with ¢, =2®&,a,, ¢, =0.8n& 0,0, +a—32, c, =21€,a,a0, and ¢, =ma,Q,.

0

(2.308)-(2.30d)

The above equations show some important features of the pile cap stiffness. Among the
parameters specified in the above equations, c,, C,, ¢; and c, are dependent on the

shape function l,U(Z ) which may not differ drastically in different soil-pile systems as
long as piles exhibit a flexible nature, and k,/uL, aone includes aterm proportional
to R,/L,.Equation (2.28) was derived with the intention of showing what could be the
most important key parameters that determine k., . The assumption taken to derive the

equation is good enough for this purpose, but certainly is an oversimplification of reality.

Since soils below active pile lengths are not alowed to deform at all, the assumption is
liable to lead to overestimation of the stiffness parameter k, and underestimation of

the damping parameter c,. Therefore, parameters ¢, c,, ¢, and c, were obtained

not directly from Equations (2.30a)-(2.30d), but in such a way that the overal error
would be minimized for the variety of soils and pile parameters examined. The
parameters that have been considered are: 1) pile parameters such as group-pile stiffness,
El (=n,E_I,), and active pile length ratio, L,/ L; and 2) soil parameters including
shear modulus ¢ and material damping D . In this discussion, only a homogeneous
soil profile with a square arrangement of piles is considered. The best fit of the values
from Equation (2.28) to rigorous solutions of k,, was obtained by setting c,, ¢, c;
and c, a 2m, m/2, 2m and /4, respectively. Some representative cases are

shown in Figures 2.8a-2.8f.
The present simple expression of k,, (Equation (2.28)) alows the effects of overall

site non-linearity to be reflected by simply replacing the shear modulus of the intact soil,
u, with the complex modulus, u'(1+iD); this describes equivalent-linear features of

the soil experiencing dynamic loading, and is obtained from shear-modulus-reduction

and damping ratio curves of the soil. This manipulation, however, causes the stiffness
and damping parameters k, and c, in Equations (2.29a) and (2.29b) to be dlightly

dependent on frequency as.

0 0

% _BrR T opm (2.31)
UL, 0O L, 20

G~ orpshrRo + T T2 by (2:31b)
1L, 0L, 2 470

When the effect of D cannot be ignored in Equations (2.31a) and (2.31b), appropriate
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values of k, and c, must be determined taking into account the most probable

predominant frequency a in the soil-structure interaction reality. Figures 2.8a-2.8b
show that introducing the complex shear modulus of soil, the effect of material damping
has properly been taken into account.

The downward dips in these non-dimensional plots of rigorous variations of k,, Vs.
frequency occur at essentially the resonance frequencies of the soil stratum for vertical
shear wave propagation. Thus the results from ‘TLEM’ analyses with a perfectly rigid
base laid under the soil stratum correspond to cases where this effect is most
pronounced. It is therefore more likely that the solutions adhere along the ridges of
these plots as the bases become more flexible. As can be seen from Figure 2.8c,
Equation (2.28) underestimates dlightly the real part of stiffness, and overestimates its
imaginary part for lower values of shear modulus of soil.

From the study of a wide range of pile parameters (viz. number of piles, diameter of
individual piles and length of piles), it was found that Equation (2.28) is valid
irrespective of pile and soil parameters as long as the active-pile-length ratio, L,/ L, is
within a certain limit. Beyond this limit, the behavior of piles deviates from the

‘flexible’ nature. Figures 2.8d-2.8f show this trend of the deviation of Equation (2.28)
from the results of “TLEM” (Ver. 1.2) as the ratio L,/ L increases. In these figures,

L,/ L are changed by arbitrarily changing the number of piles and/or diameter of
individua piles. These figures show that the allowable limitof L,/ L is0.3or less.

A similar expression must also be derived for the dynamic stiffness of grouped piles
in rocking motion and for the coupled stiffness between lateral sway and rocking
motions. In this extension also, active pile length, if rationally estimated, would allow
the pile-cap stiffness to be approximately described in a similar manner. Further detailed
study on this point will be addressed in alater publication.
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np—4, d=0.5m, L=10m, x = 30000 tf/m" (v,= 414 m/s)

20

equivalent beam (TLEM)

15

0 ' 1 ' 2 ' 3
non-dimensional frequency, wR /v,
Figure2.8a Variation of stifnessfor sway motion of pile cap
(D =0.05)

non-dimensional stiffness, k  /(uL,)

np:4, d=0.5m, L=10m, p = 30000 tf/m’ ((v,;)= 414 m/s)
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g | real part
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é 1 imaginary part

k= 0 : : .

c 0 1 2 3
=

non-dimensional frequency, wR, /v,

Figure 2.8b Variation of stiffnessfor sway motion of pile cap
(D =0.20)
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non-dimensional stiffness, k_/(uL)

np:4, d=0.5m, L=20m

15
equival tnt beam (TLEM)
|0 equation (28) L/L=0.10
0 sd=4.19
real part
1/
QR

ginary part

0.0 I 0.5 1.0 I 15
non-dimensiona frequency, wR, /v,

Figure 2.8c Variation of stiffness for sway motion of pile cap

non-dimensiond stiffness, Kk /u L,

(1 =1875tf/m”, v.= 103.5 m/s)

n=4, d=0.5m, L=10m, u = 30000 tf/m’ (v,= 414 m/s)

20

equivalent beam (TLEM)

5] —O— equation (28)

s/d=4.19

0 T T T T
0 1 2 3

non-dimensional frequency, w R, /v,

Figure 2.8d Variation of stiffness for sway motion of pile cap

(L /L =0.10)
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Figure 2.8e Variation of stiffness for sway motion of pile cap
(L,/L=0.31)
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Figure 2.8f Variation of stiffness for sway motion of pile cap
(L,/L =0.40)



30 SIMPLE EXPRESSIONS OF THE DY NAMIC STIFFNESS OF GROUPED PILES

2.4. SUMMARY

Piles grouped beneath a superstructure can be viewed as a single equivalent upright
beam when the piles are closely spaced. The stiffness matrix presented herein (Equation
(2.1)) yields close approximations of both dynamic pile-cap stiffness and kinematic
displacement factors. This idealization of grouped piles as a single equivalent upright
beam and the concept of the active pile length have facilitated the derivation of asimple
expression of pile-cap stiffness in terms of frequency-independent mass, damping and
stiffness parameters (Equations (2.29a)-(2.29c)). This expression is valid irrespective of
pile and soil parameters as long as the pile group exhibits a “flexible” nature with its
active-pile-length ratio, L, /L, kept less than 0.3. The present smple expression of
pile-cap stiffness also alows the effects of overal site non-linearity to be reflected by
simply replacing the shear modulus of the intact soil, u, with the complex modulus,
u'(1+iD), which describes equivalent-linear features of the soil experiencing the
seismic motion.

A similar expression must also be derived for the dynamic stiffness of grouped pilesin
rocking motion and for the coupled stiffness between lateral sway and rocking motions.
Moreover, there is further scope to extend this study for inhomogeneous soil-profile and
the local non-linearity of soil that develops in the vicinity of piles. In these extensions
also, active pile length, if rationally estimated, would alow pile-cap stiffness to be
approximately described in a similar manner. This will be discussed in future
publications.
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Chapter 3

SIMPLE EXPRESSION OF THE DYNAMIC
FLEXIBILITY OF RIGID
EMBEDDEDFOUNDATIONS

3.1INTRODUCTION

Flexible piles have been the focus of the previous discussion in Chapter 2. The
idealization of grouped piles as a single equivalent upright beam and the concept of the
active pile length have facilitated the derivation of a simple expression of the pile-cap
stiffness in terms of frequency-independent mass, damping and stiffness parameters.
This ssmple approximation, however, is not appropriate for a rigid embedded body
subjected to dynamic loading. Moreover, the rigidity of the foundation prevents it from
following closely horizontal component of the free-field deformation pattern {u f} .

It is shown in this chapter that salient features of soil - stiff embedded foundation
interaction are often insensitive to the detailed variations of soil profiles, and this fact
enables us to apply the present method for soil-structure interaction simulation to real
complex conditions. Nonlinear effects of soil will presumably be taken into account by
changing the frequency-independent mass, spring and damping parameters with change
in the soil shear modulus. Therefore, it is worthwhile to examine if rather secondary
factors can be eliminated so that the simulations have a good balance between
mathematical rigor and uncertainty in the complex environment.
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3.2KINEMATIC INTERACTION

A foundation of radius R, is assumed to be embedded in a soil deposit underlain by a

semi-infinite bed-rock as shown in Figure 3.1. The inability of the rigid embedded
foundation to conform to the deformation of soil thus causes the motion of the
soil-structure interface to deviate by {us} from the free-field motion {u f} (kinematic

interaction). The foundation input motion must thus be modified to incorporate the
effect of the kinematic interaction. The foundation-input motion {u f} +{ us} for the
systemiillustrated in Figure 3.1 is estimated rigorously by using the thin layered element
method (Tagimi and Shimomura, 1976). Figure 3.2 shows the variation of
(ufx+usx)/ u'x, i.e, the foundation-input motion at the ground surface, which is
normalized by the freefield motion u'x. The ratio is nearly a real function of

frequency, and decreases gradually as the frequency increases beyond the first
fundamental natural circular frequency w, of the soil deposit. This implies that the

contribution of the fundamental vibration mode ¢, of the soil deposit to the

foundation-input motion is predominant, because the rigidity of the embedded
foundation keeps it from following the motion of higher modes. Therefore, it might be
acceptable to approximate the foundation input motion excluding the higher modes of

vibration. To examine this point, the free-field motion is calculated by taking into
account only the first mode of vibration ¢,, and compared with the rigorous solution.

Figure 3.3 shows the variation of the approximate solution of (ufx,lst mode)/ u'x. The
similarity is immediately apparent when Figure 3.3 is compared with Figure 3.2, and
thus, provides a firm basis for this approximation.

Figure. 3.1 Foundation embedded in thin-layered soil deposit
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3.3 SIDE SOIL STIFFNESS FOR ROCKING MOTION

When the embedded foundation experiences an intense earthquake motion, the
surface soil deposit exhibits more pronounced nonlinear features than the bed-rock. Asa
result, soil shear moduli at different depths in the surface layer vary with time. On the
contrary, densities and Poisson’ s ratios of soils are very little or negligibly influenced by
the soil nonlinearity. Thus the rocking stiffness of an embedded foundation reflects the
overall change in soil shear moduli throughout the depth.
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The following linear variation of shear wave velocity with respect to the depth z is

assumed with specific values of shear wave velocities at the top and bottom of the
surface soil deposit:

Vi () = (7 () = )+ (0) (31)

where, L is the thickness of the surface soil deposit. The shear wave velocities are
modified to fluctuate randomly around the values given by Equation (3.1) so that the
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ratio of the deviation Av;(z) to v;(z) eventualy exhibits the Gaussian distribution

with the standard deviation of 20%. Finaly, the obtained shear wave velocities at
various depths are multiplied by a uniform factor throughout the depth, to keep the
fundamental resonance frequency equa to that for the original simple soil profile
described by Equation (3.1). Following this procedure, four different soil profiles are
prepared for each of two different cases of v;(0)/v;(L)=1 and v;(0)/v;(L)=2 as
shown in Figures 7a and 7b. Impedance functions for the rocking mode of the
embedded foundation were computed for these soil profiles by using Thin-Layered
Element Method.

Figures 3.5a and 3.5b show the computed rocking stiffnesses. It is noted that the
change in the soil profile to the extent shown in Figures 3.4a and 3.4b causes no serious
change in the stiffness of the foundation. These examples suggest that the rocking
stiffness of a stiff embedded foundation is strongly governed by the fundamental natural
frequency of the surrounding soil deposit, and rather secondary detailed features can be
eliminated. It is therefore worth examining the contribution of the first fundamental
vibration mode of the soil deposit to the impedance function of the foundation.

The present simulation approach utilizes simple expressions for soil responses at the
side of the embedded foundation, which are obtained neglecting the vertical soil
response for the horizontal and rocking responses of the foundation. This assumption
was first used by Tagjimi (1969). Modified Tgjimi’s solution shows that the restoring
moment M, for the harmonic rotation ¢,e'“* isexpressed in the form of:

M, = kR,side‘l’oemI (32
where,
_8ur’ L& 4.°Q,
kR,side - T I’_ _Z m4
0 m=13,5.
_ 4K, (b,) K, (a,) + a,K,(0d,)K,(a,) + b, K, (@)K, (by)
" a,Kq (@)K, (b,) +b,Ko (b, )K, (@) + a,b, Ko (a,)Ko(b,)

— W r.O — CL‘er TV
—10 ’bm i
a, Zm V. Z

w, =2rf, =1
w =21, =71

T \A
o n A)
Z, = J m?(1+iD) - E;g (3.38)-(3.3f)

where K., is modified Bessel function of order m. Though the original Tajimi’s

solution is based on the assumption of vanishing vertical displacement, the modified
longitudinal wave velocity v, * isused here to consider the stress free condition on the

ground surface (Konagai and Maehara, 1992). The contribution of the first mode is
isolated from the other modes in this expression. The impedances computed in this
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manner is compared in Figure 3.6 to those computed with up to 10 modes.  They are
also computed by the thin-layered element method which does not ignore the vertical
soil response and is considered to be rigorous compared with Tgjimi’s method. It is
clear in this figure that the exclusion of higher vibration modes in Taimi’s method
affects little the dynamic stiffness, and the good agreement between the rigorous and
approximate solutions proves the predominant contribution of the fundamental vibration
mode.

All the examples mentioned above shows that salient features of the impedance
function of a stiff embedded foundation are insensitive to the detailed variations of soil
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profiles and, thus, this allows us to describe the impedance function by only a limited
number of parameters.

The superior contribution of the fundamental vibration mode ¢, to soil-embedded
rigid body interaction greatly ssimplifies the soil-embedded body interaction analysis.
When the surface soil deposit is divided into vertical soil columns as shown in Figure
3.7a, these columns, given a prescribed vibration mode of ¢, can be replaced with
simple-damped oscillators. Reducing the size of each soil column, the surface layer is
modeled by a plane of infinite extent supported by Winkler-type springs (Figure 3.7b).

The similarity isimmediately apparent when Figure 3.7 is compared with Figure 2.7 in
Chapter 2, and it is now obvious that the rocking stiffness, Ky, of the embedded

foundation has the same form as k_ in Equation (2.15) (Chapter 2), with L* added to
its right-hand side as:

Ke=L[& (V)E (3.4)
Further extended discussion on the stiffness could be made in the similar manner as that
in Chapter 2. In Chapter 2, downward dipsin the plots of rigorous variationsof k,, Vs.
frequency were ignored in discussing simplified expression of k., in terms of the
frequency-independent mass, spring and damping parameters. Figures 3.5 and 3.6,
however, show that these dips are rather clearer and more significant than those
appeared in k, of pile groups. Substituting Equations (3.7a) and (3.7c) in Equation
(3.4) yields both the real and the imaginary partsof K, as
Re(K;) _[B+04 --w<w,
2mu g, (v') 0 04  -w>a,

lm(KR) — 00 w<w,

27T/prk(v*) (B —~W>W,
Noting that a, = w,R,/V; :(n/Z)EﬂROIL) a w=0,thereal part of K, dropsfrom
0.4+ (m/2){R,/L) downto0.4as w approaches w,. The drop thus depends on the
aspect ratio R,/L of the foundation. For thick and short foundation, this drop is

(3.59)

(3.5b)

remarkable and cannot be ignored.

The stiffness S* in Equation (3.4) or its inverse, namely, a flexibility function
H'(=1/S") is the most frequently encountered expression in soil-structure interaction
analyses. The flexibility function H™ is found to be closely approximated by the
following form as:

H'@=A—— +A %

iw+a, (iw+a,)? +w,

L
where, A=A %—1% A, =0.44-004 Oog, %

(3.6)
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Figure3.8 Flexibility functions H" (w) for different height-radius ratios

Figures 3.8a-3.8d show flexibility functions for the rocking motion of an embedded
rigid cylinder for different height-radius ratios (L/R;) 1, 2, 4 and 8, respectively.
Within this range of radius-height ratio, the expression agrees well with the rigorous
solution. Inverse Fourier transformation of H”™ yields the impulse response function
h'(t) as:

h'(t) = Ah(t) + Ah.(t) (3.8)
where, h,=e“, h, =e“ cosw,t (3.9a), (3.9b)
Equation (3.8) implies that the impulse response function h'(t) is approximated by
adding up exponential and exponentially decaying cosine functions.

3.4 SIMPLE EXPRESSION OF STIFFNESS

Needless to say, use of the ssmple models that have been discussed so far leads to
some loss of precision, to be sure, however, reviewing these expressions, it is found that

the impulse responses of these models are closely approximated by summing up
exponentia and/or exponentially decaying sine and cosine functions of timet, h, (t),

h(t) and h,,(t), namely,
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Figure 3.9 Mechanical model for basic response functions

h(t) = i (Aumhem () + A b o (0 + AR (0) (3.10)

m=1

where, A, A, and A areunknown constantsand

Fe™™ e cosw, ,t.e " sinw, it =0

Ry N (0,0 (1) = E O”“t - (3.11)
Fourier transformsof h, (t), h.,(t) and h, (t) inEquation (3.4) are:
F(Myy () = H g (8) = ——— = ———en (3.129
o o s+a,, s’ +2a,,s+a,,’
F(Non()=Hop ()= dem (3.12b)
' ’ s*+20,,.std,, tw,,
and F(h,,(1)=H,,(s) = o i (3.120)

s +20,,8+0,,° +®

s,m

where, s=iw and F denotes Fourier transformation.
It is noted here that the flexibility function of an assembly of three springs, k., K.,

k,, and two dashpots, c,,, c,,, shown in Figure. 3.9Y is expressed in the following
form as:

H(s) = (Caz + Ca.‘l)s + (ka2 + kal) (3.13)
Calcaz82 +{ka_‘LCa2 + kaZCa_‘I. + kb (Caz + Ca_‘l.)}S + ka_‘I.kaZ + kb (kaz + kaj )

which has the same form as any of Equations (3.12a), (3.12b) and (3.12c). Setting
C,C., 1N Equation (3.13) at aminus constant value -1, for example, and equating all the

terms in Equation (3.13) with those of Equation (3.12a), five model parameters, k_,,
k., k, c, and c,, aregivenasrea valuesas:
k, =0.618a, (3.14a)
k., =-1618a,, (3.14b)
k,=0 (3.14c)
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c,, =0.618 (3.14d)
c,, = -1618 (3.14¢)

It is noted here that the mechanica model with the above five parameters (Equations
(3.144)-(3.14e)) isidentical to a smple Kelvin-Voigt model with asingle spring, -a. .,

and a single dashpot, -1, arranged in parallel. Similarly, the parameters for Equation
(3.12b) are obtained as:

k., =(0618a,, +w,,) (3.153)
k,, = ~(16180a,, +w,,) (3.15b)
k, = —2.236w,, (3.15¢)
c,, = 0618 (3.15d)
c,, = -1618 (3.15¢)
and those for Equation (3.12c) are:
)
kal =0sm ~ - (316&)
' 2
)
kep = =0 =" (3.16b)
k, = 1250, (3.16¢)
c,=1 (3.16d)
C,=-1 (3.16€)

Needless to say, springs and dashpots should be positive in actuality. If these parameters
were free from this restriction however, it would surely be possible for Equation (3.13)
to be completely identical to any of Equations (3.12a), (3.12b) and (3.12c), and this

assumption is possible in both analog circuits and digital signal processors.
The side soil stiffness, K, (Equation (3.4)), for the rocking motion of an embedded

rigid body is thus approximated by a simple mechanical model illustrated in Figure
3.10.

'kb,c k \ | ¢0'\

|
|
: Y
R L

|

[ _ _+_

Figureure3.10 Simple expression of side soil stiffness
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3.5BASE SOIL STIFFNESS

Differing from flexible pile foundations, the contribution of a base reaction to the
stiffness of an embedded rigid body is not aways small enough to be ignored. Unit
impulse functions of soil/rock at the base of rigid embedded foundation are assumed to
be those for a half space medium. According to the approach presented by Meek and
Wolf (1992a-1993b), the soil is idealized as a truncated semi-infinite elastic cone with
its own apex height (Figure 3.11) in order to develop unit-impulse functions for a
surface foundation. The apex ratio z,/r,, or the opening angle of the cone, is
determined for each degree of freedom such that the static stiffness coefficient of the
disk on the cone is equal to that on the semi-infinite soil half-space, although the wave

propagating through the cone dominates the behavior in the high frequency range. For a
translational cone, the unit-impulse response function h, (t) isthus obtained as:

0 v
_ Div_'re ZOt t>0
h()=0K, .. 7 (3.17)

t<0
with K, g = oV~ 01, 1 Z,, where v, is the shear wave velocity. The unit-impulse
response function h,(t) for arotational responseis similarly obtained as:
3vL *
hy (t) = El%%e - %Cosgzt vas fvz: t% t>0 (3.18)
6,static
t<O0

where Ky oo =30V, °lo/ 2z, with 1, =mmr,* /4, and v~ isthe modified longitudinal
wave velocity (Meek and Wolf, 1992a-1993b).

The above expressions for unit-impulse functions are also found to be linear
combinations of exponential and/or exponentially decaying sine and cosine functions

== * é%

~ | ~—
o [ - —
0
> >
< v, <l v
L
v
trandational cone rotational cone

Figure3.11 Conesfor various degrees of freedom (Meek and Wolf, 1992a-1993b)
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3.4 SUMMARY

Salient interaction features are often insensitive to the detailed variations of soil
profiles. As for an embedded stiff foundation, its impedance function is strongly
governed by the fundamental vibration mode of the surrounding soil deposit and the
contributions by other modes can be ignored. This fact alows us to describe the
impedance function (stiffness) by only a limited number of parameters. Such a small
number of parameters are easily manageable even in commercially-available persona
computers. This simplification thus certainly enhances the practicality of the present
simulation approach and also will enable us to use the present ssimulation approach in
the nonlinear soil environment.
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Chapter 4

REAL TIME CONTROL OF SHAKING TABLE FOR
SOIL-STRUCTURE INTERACTION SIMULATION

4.1. INTRODUCTION

Simple descriptions of foundation stiffness parameters have been discussed in the
first half of this report (Chapters 1-3). The stiffness parameters are eventually
approximated by a limited number of frequency-independent parameters. All these
expressions may be such an oversimplification of reality that they cannot cover al cases
of soil-structure interaction reality. They, however, allow the real-time production of the
soil-structure interaction motions on a shaking table.

A faithful reproduction of input motions on a shaking table, however, is not easily
done. Recent advances in robust and adaptive control theories have certainly enhanced
the controllability of shaking tables to a great extent (Horiuchi et al., 1995, Stoten et al.,
1998), and yet, the motions of a table often have to be adjusted, through iterative trials,
to the intended base motions by modifying the input time histories; the iterative trials
are not allowed to be done in the present approach. Generadly, the larger atable is, the
more difficult it is for the table to be controlled at will, and there often remains a time
delay At between the produced motion and the input signal. This chapter shows in its
first half a practical method for canceling the time-delay effects in shaking table tests.
The latter part then describes simple examples of soil-structure interaction simulations.
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4.2 CANCELLATION OF TIME DELAY EFFECT

It is noted that the system illustrated in Figure 1.1 (Chapter 1) is realized on condition
that a shaking table loses no time in producing faithfully its input motion. The motion
produced by the shaking table, however, is not exactly identical to the intended time
history because the ratio of output-to-input amplitude of the shaking table system does
not remain the same over the desired frequency range. The performance of the system’s
transfer function is also affected by the presence of models on the shaking table; this
fact may cause the motion of the table to further deviate from the intended time history.
A controller with the transfer function T normally performs like a low pass filter, and
experiments on the table are conducted below its cut-off frequency. Below this
frequency yet, there remains a time delay At between the produced motion and the
input signal. The effect of the time delay, described in the frequency domain as
T Oe™, could be canceled by multiplying the flexibility function H by T7.
Assuming that the performance of a soil-foundation system is approximated by that of a

simple-damped oscillator with spring, damping and mass parameters, K, C and M
(Figure4.1), theflexibility function H, isexpressed as:

1

H, = 4.1
* K-w’M +iaC 41
Thus, the cancellation of the time-delay effects is made by
j cAt

HoT 0 4.2)

K-wM +iawC

For smaller valuesof waAt, Equation (4.2) is rewritten as:
H T 0—— L (4.3)

K-w'(M-AM)+iw(C-AC)

where, AM =CAt and AC = K [At (4.4a) and (4.4d)

»

Figure 4.1 Modeling of a pile-group as a ssimple-damped oscillator
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Equation (4.4b) shows that the equivalent mass and the viscous damping coefficient are
reduced by cat and K t, respectively. The reduced mass m -amM and the damping
coefficient ¢-aAc must be positive, calling for:

AM _ 4Bt g and AC AL (4.58) and (4.5h)
M o c
with t, =c/K and t, =2m/M /K (4.68) and (4.6b)

The above conditions (Equations (4.5a) and (4.5b)) are usualy satisfied in redlity for
many cases of soil-structure interaction, because radiation of waves from a foundation
leads the motion of the structure to be noticeably damped.

It is, however, necessary for the time delay to be minimized when Equations (4.6a)
and (4.6b) are not satisfied. One possible measure for reducing the time delay is to
increase the feedback gain of a servo-amplifier of the shaking table (Figure 4.2). In
Figure4.2, u, and u,, aretheinput signal and the signa of the motion produced by
the shaking table, respectively. The deviation of the produced motion from the input
signa, u,, —u,, is multiplied by a negative factor — [, and is added to the input
signal u;,. Thefollowing relationship between u, and u,, isthen satisfied with the
original transfer function of the controller itself (g =0) denoted by G:

uout = G(uin + B(uin - uout)) (47)
From Equation (4.7), the overall transfer function T isdescribed as:
= U _G+GP (4.8)
uin 1+ GB

It is noted in Equation (4.8) that T comes closer to 1 as the feedback gain, g,

increases. The servo-amplifier shown in Figure 4.2 was built in a one-dimensional
shaking table system to check its performance. Figure 4.3 shows that a servo-amplifier
with a larger value of p offers more significant improvement in expanding the

frequency range in which the ratio of output-to-input amplitude remains almost constant
with little phase-shift. Theincrease of g, however, leads to a decrease in the margin for

unstable clattering of the table that is caused by the noise echoing through the closed
circuit of the servo-amplifier. The authors are trying out some other attempts in which a
Robust-Adaptive way of control is utilized. They will be addressed in later publications.

U,0
Z\_[>_O Uoyt
J B(Uin-Uoyt)

A
- Uout \-ll

Figure 4.2 Servo-amplifier
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4.3 EXPERIMENTS

In order to provide a proper perspective on the usefulness of the present method, three
simple examples of simulation of soil-structure interaction effects are introduced herein;
(4.3.1) linear soil - linear structure, (4.3.2) linear soil - nonlinear structure and (4.3.3)
nonlinear soil - nonlinear structure interactions. In the third example (4.3.3), the ‘far
field’ soil non-linearity is taken into account through an equivalent linear approach. The
non-linearity produced in the vicinity of foundations, which is usually associated with
large strain and separation between soil and foundation, has not been considered in this
example yet. It is, however, shown herein that adigital signal processor alowsreal time
manipulation of the dynamic soil parameters to be made. The method on one hand
captures the non-linear soil behavior of softening and re-hardening during the course of
an earthquake, and on the other hand, allows testing of a bigger superstructure model by
obviating the need of a heavy physical ground model.

4.3.1 Flexible upright cantilever

Eight steel plates (2000 mmx 300mmx 1 mm) were fastened together with rivets
arranged in a grid to form a simple cantilever. The cantilever was then fixed upright on
a shaking table with six degrees of freedom, as shown in Figure 4.4 (Konagai et al.,
1999), because it was expected that the bending of the cantilever would cause a rocking
motion in its foundation. The feedback gains, g, of the servo-amplifier for this shaking
table are set at 0.53 and 0.41 in respect to horizontal and rocking degrees of freedom.
Mechanical properties of the cantilever are listed in Table 4.1. The cantilever is rather
flexible, with its natural frequency set approximately at 1Hz, so that interaction forces
(both shear force p, and moment p,) are easily measured by bonding strain gages to
the lower end of the cantilever. This flexible cantilever was assumed to be mounted
virtually on a circular rigid mat foundation (radius (r,) = 1.2 m, thickness (d) = 0.2 m,
Table 4.3) resting on a soft semi-infinite half-space of soil (v, =9m/s, Table 4.2).

Meek and Wolf® ” have developed a unified approach for soil-structure interaction
analysis by using truncated semi-infinite cone models representing an unbounded soil
medium (See Chapter 3, 3.5, p. 44). According to their approach, the soil supporting a
rigid mat foundation is idealized for each degree of freedom as a truncated semi-infinite
elastic cone with its own apex height z, (Figure 4.5). They also showed that the

stiffness parameters for sway and rocking motions are approximated by those of
discrete element models illustrated in Figure 4.5. The flexibility, H,(s), of the

discrete-element model in horizontal x direction is described as;
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Fig. 4.4 Upright beam on shaking table

Table4.1 Parameters of cantilever

width Height | thickness | Bending stiffnessEl | density p
(m) (m) (m) (Nm?) (kg/cm?®)
0.3 1.8 0.008 2132.5 0.00801
Table4.2 Soil properties
Density p. shear wave | Poisson’sratio
(kg/cm?) velocity v
v, (m/s)
0.0016 4.8 0.5
Table4.3 Parametersfor foundation
Radius r, thicknessd density p,
(m) (m) (kg/em’)
0.8 0.1 0.0025
1
H = 4.9
=gk (4.9)
where,
2 2
K, = AASE LI (4.10a)
z,
C, = pv, Ot (4.10b)

and v is the shear wave velocity propagating through the cone that dominates the
stiffness within considerably high frequency range. The apex ratio z,/r,, or the
opening angle of the cone, is determined by simply equating the static stiffness
coefficient of the disk on the semi-infinite soil half-space to that of the corresponding

cone, and is given by:
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% g(z -v) (4.10c)

lo
As far as the rocking motion of the disk is concerned, a rotational cone should be
discussed. The flexibility, Hyy(S), of the equivalent-discrete-element model in rocking

motion is described as;

1 1
¢, M,
oo (9= — 00 (41
S+ fs+ b
(] M 0
where,
2
K, =PV Lo (4.123)
A
C9 =pM, (412b)
Mg = 057201, (4.12¢)
with Iy = (1! B)r,* (4.12d)

The velocity v is assumed to be identical to that of the longitudinal wave traveling

through the cone when Poisson’s ratio of the soil is less than 1/3. For larger values of
Poisson’'sratio, v issetat 2v,. Theapex ratio z,/r, of therotational coneis:

% _9m (1-v) %lg (4.12¢)
r, 32 s

mat foundation

half space of soil
Figure 4.5 Mat foundation and equivalent discrete element model

displacement u, (cm)

0 2 4 6 8 10
time (s)

Figure4.6 Input base motion u! +u?
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In actuality, the lateral and rocking motions of a foundation are coupled, and the present
method illustrated in Figure 1.1 (Chapter 1) allows the effect of the coupling to be
simulated. The coupling effect, however, isignored in this simulation.

As has been mentioned, electric-resistance strain gages were used as a sensing device
for both shear-force and moment. A pair of strain gages were bonded on both sides of
the lower end of the cantilever to sense the strain in the cantilever resulting from the
bending motion of the cantilever. The outputs of strain gages are then connected to an
appropriate bridge circuit that produces a signal proportional to the bending moment.
Another pair of strain gages were then pasted 10 cm above them, and the measurement
of moments at these two points permitted a determination of the shear force at the lower
end of the cantilever. It is noted that the moment and the shear force sensed by these
strain gages are not identical yet to the interaction forces, p, and p,, on the
soil-foundation interface. The interaction forces are to be evaluated taking into account

the inertia forces of the foundation virtually resting on the half-space of soil. For this
evaluation, both lateral and rocking accelerations, U, and Uy, were measured on the

shaking table, and the signals of U, and U, were multiplied respectively by the
foundation mass, m, (=p, Omw,’d), and the moment of inertia, M, (=p.l,d+M,,),
where m,,, isthe contribution of the soil mass caught beneath the foundation, and is

given by:
1
Mtrap - 12@ —EQJJ ofo (4.13)

A horizontal impulse shown in Figure 4.6 was given to the shaking table as an effective
foundation input motion, u +uS, and the acceleration response at the top end of the
cantilever was measured. The dotted line in Figure 4.7a shows the acceleration time
history without the interaction motions, uj, and ug, being added; whereas the dotted

line in Figure 4.7b shows the response affected by the interaction motions. Thick lines
in these figures show the computed responses of the discrete element model in Figure
4.5. In this numerical smulation, the finite difference method was utilized to obtain the
solutions in the time domain. The thick and dotted lines are in good agreement in both
figures; this fact clearly demonstrates that, for the simulation of soil-structure
interaction motions, the present method works properly as expected. These figures show
that incorporating the effect of the interaction motion leads to the increase of damping
and to the slight decrease of natural frequency as well. Although only horizontal base
motion was given to the shaking table, bending motion of the cantilever eventualy
caused the shaking table (the virtual foundation) to rock as shown in Figure 4.8. The
observed rocking motion, uj, is also in good agreement with the numerical simulation

(thick line).
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Figure4.7 Accerelation at the top end of upright beam

The present system is conditionally stable as is often the case with feed-back control
systems. Especialy when a structure model with low damping ratio is shaken, the
motion of the shaking table sometimes echoes through the circuit causing a serious
clattering (howling) of the table. Figure 4.9 shows one example of clattering that
happened before the table was properly heated up and stabilized. The predominant
frequency of the noise is 11 Hz, and is about identical to the fourth natural circular
frequency of the model. When the predominant frequency is higher than the frequency
range in which the desired signal exists, a low-pass filter may be used to reduce the
noise. It is however noted that the use of a low-pass filter causes the response of the
table to be more delayed. Some built-in device such as an adaptive echo canceller'®
would be useful for further improving its performance.
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Figure4.9 Howling observed at the top end of upright beam
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4.3.2 Slippage of rigid block on mat foundation

A rigid cylindrical block is assumed to be put on a rigid and circular mat foundation
resting on a semi-infinite half medium of soil (Figure 4.10a). The dimensions of both
the prototype block and foundation are listed in Table 4.4, whereas Table 4.5 shows the
parameters for the soil medium. Poisson’s ration of the soil was set at 0.5 on the
assumption that the ground is an alluvial soft soil deposit that is totally saturated with
water. In this case also, the soil supporting a circular mat foundation is idealized for
each degree of freedom as a truncated semi-infinite cone (Figure 4.10b) with its own
apex height z,. Only translational motion of the foundation is discussed herein, and the
soil-foundation is modeled by a damped one-degree-of-freedom system. The model of
the soil-structure system is then prepared by reducing the parameters, m, k and c to the
uniform scale of 1 to 100. Since the ratio of these parameters is kept unchanged, the
time scale is not changed at all.

rigid block rigid block

=5

half space of soil

p

a Rigid block on mat foundation b trandational cone

Figure4.10 Rigid block put on arigid mat foundation
resting on a semi-infinite soil medium

Table4.4 Dimensionsof block and foundation

(a) block
Mass Radius Height
7.1x10° kg 7m 2m

(b) mat foundation
Mass Radius Height
1.4x106 kg 11m 1.6m

Table4.5 Mechanical properties of soil
Density Shear wave Poisson’s ratio
velocity
1.6x103 kg/m3 100 m/s 0.5
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Figure 4.11 shows the model put on a shaking table. The steel block in the middle is
the model of the rigid block, and the shaking table itself virtually represents the motion
of the mat foundation on the semi-infinite soil half-space. The block is put not directly
on the shaking table but on a flat steel plate supported by four stiff upright legs with
strain gages pasted on them. These gages pick up the base shear force from the block.
An impulse as shown in Figure 4.12 is given to the shaking table as an input motion
u, . Thetest was also conducted for the above block model put on therigid base. Figure
4.13 shows time histories of both the displacement of the shaking table and the distance
that the block has dlipped. Dotted lines in this figure show the motions without the
interaction effect being taken into account, whereas thick lines show the motions
affected by the soil-structure (foundation-block) interaction. Incorporation of the
soil-structure interaction leads to slight increase in the duration of the base motion and
drastic decrease of the distance that the block has dlipped. The mass of the block is the
direct cause of the increase in the duration of the base motion, and the decrease of the
diding distance is closely linked with the increase of the energy that has dissipated as
outwardly propagating waves into the virtualy spreading soil medium. The present
method alows both influx E, and efflux E « Of energy through the

input dissipat

foundation to be measured in real time. These two kinds of energy are respectively:

t
Einput :J.(pxux + peue) mit (4143.)
0
t
Edisipaed :I(_ pxﬁx - peae) [dt (4-14b)
0
The energy, E_,omed- USed up within the model on the shaking table is then obtained
as.
Eoonsumed = Einput - Ediss'pated (4140)

Figure 4.14a shows the variations of these energies with time where the interaction
effects are ignored, and thus, the cumulative loss of energy through friction ends up to
be the same amount as the energy influx. On the other hand, Figure 4.14b, in which
soil-structure interaction effects are incorporated, shows that a part of influx energy
dissipates away and just the remainder is used up through friction.
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Figure4.11 Block model on shaking table
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Figure4.12 Displacement of shaking table and distance that block has slipped
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Fig. 4.13 Influx, efflux and consumption of energy
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4.3.3 Bilinear viaduct pier model on a pile group embedded in non-linear soil

Ground response analysis

An application of the present method to a particular prototype is henceforth described to
explain the steps of the method in an effective way. The prototype is an expressway
viaduct supported by pile foundations. Information regarding the ground profile of the
site is provided in Table 4.6. Since pile foundations are quite flexible in nature, it is
assumed here that they follow the deformation of their surrounding soil. Therefore, in
the non-linear ground response analysis, only the soil without the presence of any
foundation was subjected to an earthquake excitation.

Table 4.6. Ground profile at the site of the prototype

Thickness Unit weight Shear wave Shear Modulus
velocity
h (m) y (tf/m?) Vs (m/s) Go (tH/m?)
3.8 1.9 144.0 4020
3.6 1.9 129.3 3241
12.2 14 159.8 3648
0.9 1.9 173.2 5816
115 14 159.5 3634
5.0 1.9 161.0 5026
6.0 1.9 188.2 6867

The ground response analysis was carried out considering only vertically propagating
horizontal SH waves. Hence the ground profile of Table 4.6 was modeled as a one
dimensional horizontally layered soil column having non-linear soil properties. For the
analysis the Finite Element Method was adopted in spatial domain and the Finite
Difference Method in time domain. To express the non-linear stress-strain relationship
of each layer of the soil column, the Hardin-Drnevitch model was adopted in
association with the Modified Masing rule. In order to take radiation damping into
account, a dashpot was attached at the bottom of the soil column. For shear wave
propagation through a one-dimensional semi-infinite medium, the damping coefficient

of the dashpot is given by,
C=G; /Vy (4.15)



62 REAL TIME CONTROL OF SHAKING TABLE FOR SOIL-STRUCTURE ...

Where, G, and Vv, are the shear modulus and shear wave velocity of the base rock,

respectively.

The soil column was subjected to a sample base excitation for the non-linear ground
response analysis. The north-south component of the acceleration record of the
earthquake that occurred at Shizukuishi in Iwate prefecture, Japan on September 3,
1997 [Konagai et al., 1999] was used as the sample base excitation, shown in Figure
4.14. The analysis yields the displacement history at the surface layer, shown in Figure
4.15, and the stress-strain histories of all the layers. At each reversal point of the
stress-strain history the corresponding secant shear modulus was determined. The
method of determining the secant shear modulus is illustrated in Figure 4.16. Figures
4.17(a) and 4.17(b), respectively, show the variations of the secant shear moduli and the
corresponding damping ratios of different layers of the soil profile with time.

600+
400+
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-2001
-400+
-600-
-800-

Acceleration, gal

10 15 20 25 30 35 40
Time, s

Figure 4.14. Sample base excitation

Dizplacement, cm
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Figure 4.15. Displacement history at the surface layer
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Secant shear modulus

Figure4.16 Determination of secant shear modulus
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Figure4.17 Variation of equivalent linear parameters with time

Determination of stiffness function

In order to determine the stiffness function, TLEM (Ver. 1.2, See Chapter 2 and
Appendix 3) was employed to the soil-profile, correspoding to a particular time instant
of the duration of the excitation, in order to obtain the dynamic stiffness at that time.
The analysis yielded the dynamic stiffness of the substructure as a function of the
forcing frequency. For pile-groups, some frequency invariant parameters (K, C, and M)
can be defined to describe the stiffness function, as was explained in Chapter 2. Similar
analyses are carried on for the soil profiles corresponding to other time instants as
derived by the ground response anaysis. The non-linear ground response analysis and
the subsequent idealization of the non-linear parameters to equivalent linear parameters
provided the necessary information of soil for the linear analysis of the pile-soil
interaction. Figure 4.18 shows a typical layout of the pile-groups of the viaduct. The
outer and inner radii of each steel pile are 0.41m and 0.39m respectively.



64 REAL TIME CONTROL OF SHAKING TABLE FOR SOIL-STRUCTURE ...

10

gl ® ° ° ° °
. 6l ® . ° ° °
% 41 ° ° °
E 21 @ . ° . .

0 e ° ° °

meters

Figure4.18 A typica pile-group layout of the Misato viaduct

The variations of K, C and time-constant, T (=C/K) are shown in Figures 4.19(a)-(c)
with linear interpolation between the values obtained from the analysis. The value of M
was found to remain nearly constant at 20 tf-s’/m. Figures 4.19(a)-(c) show the
non-linear feature of the initial softening of soil and then its subsequent rehardening in
the course of an earthquake excitation.
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Figure4.19 Variation of the different parameters of the substructure

Simulation

Since the experiment was mainly focused on studying the change in dynamic behavior
of the structure due to the incorporation of soil-structure interaction effects, an exact
physical model of the prototype structure was not necessary. Therefore, instead of
making such an exact model, an attempt was made to model the dynamic features of the
prototype.

A typical pier of the viaduct was considered as the prototype under study. The weight
the pier sustains is around 666tf, and its resonance frequency is about 1Hz. The
dynamic force displacement relationship of the pier is produced in Figure 4.20. From
Figure 4.20, it is evident that the force-displacement curve can be approximated as a
bilinear one. One simple way to model this bilinear force-displacement relationship isto
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place a mass on top of a frame so that the mass dips when the acceleration exceeds
beyond the level that the friction between the mass and the frame can resist. Below this
level the mass moves with the frame. If the frame exhibits a linear feature, the
mass-frame model posseses a bilinear force-displacement relationship.

500

250 %

Latera force (tf)

-250 A

-500

0.2 0.1 0.0 0.1 0.2
Displacement (m)

Figur e 4.20. Force-displacement relationship of the pier

Experimental setup

In the present experiment, a mass of 6.75kg was placed on a steel frame. A teflon sheet
was used to reduce friction between the mass and the crossbeam of the frame. A
photograph of the experimental set-up is shown in Figure 4.21. The frequency of the
steel frame was 2Hz. Since the frequency of the frame was two times of that of the
prototype, the duration of the input motion as well as the time-constant of the
interaction flexibility function was halved. From Figure 4.20, it is found that the pier
carrying a mass of 666tf shows plastic deformation beyond an acceleration of 600gal.
But the average frictional coefficient between the mass and the teflon sheet was found

to be around 0.2. Therefore, the mass dlipped when acceleration exceeded 200gal.
Again the ratio of model displacement, u,, and prototype displacement, u, can be
expressed in terms of the ratio between model frequency, w,, and prototype frequency,
w, and the ratio between model acceleration, a, and prototype acceleration, a, as,
2
W, a
“m - TP Tm (4.16)
Up  wp ap
Therefore for the present case the input motion had to be scaled down by a factor of
v12.
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Figure 4.21. The experimental set up

A SIMULINK model, as is shown in Figure 4.22, was prepared to input shaking table
motion and to add the soil-structure interaction motion to the input motion. The motion
realized, by means of adigital signal processor, at the shaking table was adjusted by the
FFM Gain so that it corresponds to the 1/12th of the prototype motion of Figure 4.15.
The signals picked up by the force transducers attached at the bottom of the columns of
the steel frame were fed into the SIMULINK model through AD converter of the digital
signal processor. The signal was then passed through the flexibility function to produce
soil-structure interaction motion.

The SSI Gain was used for consistent modeling of the substructure dynamics. The
initial stiffness of the prototype substructure was found to be about 50 times the
stiffness of the pier. The value of the SSI Gain was adjusted so that in the absence of
any input motion, a static displacement of the frame produced a displacement of the
shaking table 1/50th of that of the frame. The parameters of the flexibility function were
changed in rea time with an MLIB routine. A gap sensor was used to measure the
relative displacement between the mass and the frame. The displacements of the frame
and the shaking table were measured with laser sensors. Accelerometers were used to
measure accel erations of the mass and the frame.
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Figure 4.22. SIMULINK model

Results

One of the major concerns of the feedback control of dynamic systems is the reliability
of the realized input motion. If the input motion is not realized at the shaking table in
real time, the delay causes a delayed interaction motion which when added to the
free-field motion fails to reflect appropriate interaction effects. For the purpose of
checking the reliability of the realized motion, the signal of the input motion before
inputting to the controller of the shaking table and the motion realized at the shaking
table were both measured at the same time. During this measurement the SSI Gain was
set at a value of zero i.e., there was no interaction effect involved. Both the measured
signals are shown in Figure 4.23. Figur e 4.23 shows that the input motion was realized
with adequate reliability.

When interaction effect is considered, the displacement of the frame was found to
deviate from the displacement when there was no interaction (Figure 4.24(a)). Similar
deviation can be observed in the displacement of the mass too (Figure 4.24(b)). Marked
difference can be noticed in the displacement of the frame between the 7th and 10th
second when the stiffness of the flexibility function is small and the time-constant is
high due to the non-linearity of soil. At the latter part of the displacement history of the
frame when input motion is about zero, the effect of increased damping due to
soil-structure interaction is quite evident. It should be mentioned here that the slippage
of the block is not aways the same even for the same input motion and even without
interaction. After repeating the same experiment a number of times, a representative
result has been produced in Figure 4.24(b).
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Figure 4.24. Displacement of (a) the frame and (b) the mass with respect to the frame

At the absence of any soil-structure interaction the total input energy is consumed
through the friction of the mass and the damping of the frame. Whereas the interaction
between soil and structure causes a large amount of energy to dissipate as outwardly
propagating waves into the virtually spreading soil medium. This dissipation of energy
causes less energy to be consumed by friction and thereby reduces the slippage of the
mass. As shown in 4.3.2 (pp. 58), the present method allows both influx of energy,
Einpe  @Nd efflux of energy Ejpues through the foundation to be measured in real time.

These two quantities associated with lateral motions are respectively:
t t

Ei nput =I pyUy [dt and Edissipaed = I_ pxﬁx Cdit (4.179), (4.17b)
0 0
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The energy, E.n.amea USed up within the model on the shaking table is then obtained
as:

Econsumed = Einput - Edissipated (4.17c)
The energy is consumed within the model in two mechanisms: one due to the damping
of the frame and the other through friction of the mass and the teflon sheet. The energy
consumed due to the damping of the structure is given by,

t
Eanp = [ CU 2 [t (4.183)
0

where ¢ and u; are respectively the damping coefficient and velocity of the frame.

The energy used up due to friction can be calculated as,
t

EfI’iC IImUlegip Ldit (418b)
0

where m and i, are respectively the mass and acceleration of the block and ug;, is
the distance the block dlips with respect to the frame. Thus E_ . mns Can aso be
expressed as

Econsumed = Edamp + Efric (4-18C)
Figures 4.25(a) and 4.25(b) show the distribution of energy in two different cases: one
without any consideration of the interaction and the other considering the interaction
effects. The difference between the input energy and the total consumed energy in these
figures corresponds to the kinetic and potential energy components of the mass and the
frame when they are in motion. In relation to the prototype, it can be said that the
soil-structure interaction causes dissipation of energy through soil which resultsin less
plastic deformation of the pier. Any prediction based on experimental results not
considering the interaction may overestimate the amount of plastic deformation
accumulated in the pier after an earthquake.

0.10 0.10
T PSS
o oo S T e o
g; H O R E .' """"" -
. IS —— input energy
c 0.00 \ input energy - j 0.00 - - - -energy dissipated through soil
L - - - - energy consumed through friction -+« - energy used up through dissipation and friction
total energy consumed --—-- total energy consumed
(ie., through friction and damping) (ie., through dissipation, friction and damping)
0.05 ; ; T 0.05 f f f
0 5 10 15 20 0 5 10 15 20
Time (s) Time(s)
(a) without interaction (b) with interaction

Figure 4.25. Distribution of energy
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4.4 SUMMARY

A new method for a model experiment on a shaking table has been examined. The
present method allows soil-structure interaction to be ssimulated. In the present method,
soil-structure interaction effects are ssmulated by adding appropriate soil-structure
interaction motions to the free-field ground motions at the shaking table. The method
was initially developed with the assumption that soil behaves linearly. In the present
report, the method was extended to take the ‘far field” soil non-linearity into account
through an equivalent linear approach. The non-linearity produced in the vicinity of
foundations, which is usually associated with large strain and separation between soil
and foundation, has not been considered in this study. In this method, the dynamic soil
parameters were varied in real time by means of a digital signal processor. The method
on one hand captures the non-linear soil behavior of softening and re-hardening during
the course of an earthquake, and on the other hand, allows testing of a bigger
superstructure model by obviating the need of a heavy physical ground model. This
method thus has the potential to be applied to a variety of experiments of soil-structure
interaction without preparing any physical soil model. The conclusions of this study are
summarized as follows:

(1) The present system is realized on condition that a shaking table produces faithfully
its input motion. The motion produced by the shaking table, however, is not exactly
identical to the intended time history because the ratio of output-to-input amplitude of
the system does not remain the same over the frequency range desired. The performance
of the system’s transfer function is also affected by the presence of a model on the
shaking table, a fact that may cause the motion of the table to further deviate from the
input. This effect will be canceled by multiplying the flexibility function, H, of a
soil-foundation system by the inverse transfer function, T~*, of the shaking table
system. This manipulation, however, leads to reducing both the mass, M, and the
viscous damping coefficient, C, making up the discrete element model equivalent in
mechanical properties to the soil-foundation system. Needless to say, the reduced mass,
M - AM , and the damping coefficient, C— AC, must be positive. The conditions are
usually satisfied in reality for many cases of soil-structure interaction because wave
radiation from a foundation leads the motion of the structure to be noticeably damped. If
not, it would be necessary for the time delay to be minimized. One possible measure for
reducing the time delay is to increase the feedback gain of a servo-amplifier of the
shaking table. It is, however, noted that the increase of feedback gain leads to a decrease
in the margin for unstable clattering of the table that is caused by the noise echoing
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through the closed circuit of the servo-amplifier.

(2) Inorder to provide a proper perspective on the usefulness of the present method, a
simple upright 2,000 mm long steel cantilever was shaken on a shaking table. The
observed responses of the beam showed that incorporating the effect of the interaction
motion leads to the increase of damping and to the slight decrease of natural frequency
as well. The numerical smulations were in good agreement with the observed
responses, demonstrating that the present method for the simulation of soil-structure
interaction motions works properly as expected. It is, however, noted that unexpected
noise amplification can cause serious problem in operating the shaking table when a
less-damped structure model is tested on a shaking table.

(3) A steel block was put on a shaking table that virtually represents the sway motion of
a rigid circular mat foundation on a semi-infinite half space of soil. An impulsive
displacement was then given to the shaking table as an input free-field motion, and both
the displacement of shaking table and the distance that the block dlipped were
measured. Incorporation of the soil-structure interaction led to slight increase in the
duration of the base motion and noticeable decrease of the distance that the block
slipped.

(4) A steel block was placed on the top of a frame, which was assumed to dynamically
correspond to a viaduct pier exhibiting a bilinear feature of force-displacement
relationship. The prototype pier is supported by a pile-group foundation embedded in a
nonlinear soft soil deposit. The model was subjected to an earthquake excitation. The
results obtained from the experiment show some important features of the soil-structure
interaction effects. The incorporation of soil-structure interaction led to a noticeable
decrease of the distance that the block dlipped.
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APPENDIX I: Stiffness matrix of equivalent single beam

The soil and n, piles system is divided into n_ horizontal slices as shown in Figure

2.2. Assumptions (1) and (2) imply that the deflections of the piles are all completely

identical, allowing the deflections of all piles to be equally described by the same
equation. Piece-wise increments of deflection angle {AB} along the piles are described

in terms of |ateral displacements {u} as.
T

{AB}:[L]{u}+é.\% 0 ... OE

(A1)
where,
01 1 O
91 1.1 1 g 0
Oh b h, O
Do L _1_11 .-
[L=0 hy h, hy b 0 (A2) and
0o 0 - - 0 O
0. 1 D
0 LE:
Jo o + - 1._10
H N N
w, is the anti-symmetric vertical motion of the pile cap at r = R,. The component,

w, / R,, in short, is the deflection angle at the pile cap.
Given the piecewise increments of deflection angle {AB} , and applying the Method
of Three Moments, theinternal moments {M,,} induced in the beam are described as:

{M,} =[D]*{ag (A3)

where,
pho R 0 0 o g
o E El B
ph g g b O
0B 0Bl B0 El 0
o h h ,hfgh -
[D] :%E 0 El Bt E @ El . (A4)
oo 0 . . 0 O
J L ]
El

0

Jo R 2§£+ i %
= El Bl E

with  El =n E I (E,I, =bending stiffness of an individua pile). (A5)

p—pp
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It is noted that the moments {M, } are expressed in terms of lateral externa forces

Pt es

int.

M} =[L]"dp } (A6)

From Equations (A1), (A3) and (A6), one obtains
iR el o . oJF
{p.4 =[LID} @ﬂ eog 0 00 - A7)

Assumption (4) implies that the overall anti-symmetric rocking motion of apile group is
controlled by axia motions of the piles. In other word, externa moments on the
soil-pile composite from its surrounding soil are sustained by the piles which experience

alternate push and pull in their axes. External moments due to the anti-symmetric
vertical motions {w} are described as:

=Ll

(A8)
with,
0 Ele ¢ 0
. E|2 ~ E|2 0 0 0 .
DRO h1 Ro h1 0
0O EI® E°¢ E° = 0
0= 7t = 0 O
| R'h R°h RSh R, h, O
0, ElC EI° , EI° ElC O (A9)
_0O - 0
[o]= 7 R’h,  R’h, R’h,  R’h 0
0o o 0 0 0
O El ¢ g
0 -— O
E Ry"hn 1 B
G G G
2 o 0 El Be | E° o

R’'h,. R’h, R’h, [
The stiffness parameter EI® in Equation (A9) is evaluated following the same
procedure as that used for the evaluation of bending stiffness of a reinforced concrete
beam. Namey, EI® is assumed to be equa to the sum of the

ny

Young's-modulus-weighted products of all the elementary areas times their distances
squared from the centroid of the cross-section A, (Figure 2.2a).

Internal moment caused by the latera motions of the beam appears as external
moment AM, at the pile cap. This moment must be added to M,. From Equation

(A3), AM, isdescribed as:
AM, = {1st row of matrix [D]‘l[L]}{u}T +D;} E—l\g—; (A10)

where, lell = upper-left corner component of the matrix, [D]'l.

Given Equations (A7), (A8) and (A10), the global stiffness matrix of the equivalent
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single beam isfinally expressed as.

0 0O B [LI]ﬂ _{I_] 1st column of [LI]j * /RO and U

P00 zerosfor other columns E
DD:D ............................. e . |:| (All)
MO Yt row of [D] L] /R, and . [Q] with D, added toits %""H

ERO E Fzerosfor other rows ' upper - left corner g

APPENDIX II: Effect of Winkler Spring k, on Novak's Solution

Novak's solution gives stiffness k, for the lateral motion of a massless disk embedded

in an infinite horizontal plane. The equation governing the motion of the plane with the
inclusion of the disk is expressed in a compact form as:

po{it =[L Hu} (A12)

where, [L] is a second-order differential spatial operator. In the frequency domain,
Equation (A12) isrewritten as:

~’p,{d =[L {u} (A13)

When the plane spreads over uniformly distributed discrete springs k,, the reaction
forces from the springs must be added as.

~’p {ut =L Kb -k{ % (A14)
Transferring k {u} in Equation (A14) to the left-hand side, one obtains:
(ko —w?p, Nt =[L Kb (A15)
Equation (A15) isre-expressed in the following form,
= (o) p,fut =L Kot (A16)

with w, :% (Equation (2.6)) and na{l—%é (Equation (2.9¢)).

It is noted that Equation (A16) has the same form as Equation (A13) with w simply
replaced with wyn . Thus, substituting w7 inplaceof w in Equation (2.8) (Novak's

solution), the equation reflects the presence of the Winkler-type springs K .
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APPENDIX III: "BASPIA" and" TLEM"

In the course of this study, the idea of treating a pile group beneath a super-structure as a
single upright beam has yielded BASPIA (Beam Analogy for Soil-Pile group
Interaction Analysis), a program alowing soil-pile group interaction anaysis to be
made with less time and effort. BASPIA includes TLEM (Thin-Layered Element
Method) as a solver that describes a soil stratum as an infinite stratified medium with
the inclusion of a cylindrical hollow, in which a foundation is fitted. BASPIA with the
restricted version of TLEM for WINDOWS is a freeware that can be downloaded from
the from the following URL.:
http://norway.iis.u-tokyo.ac.jp/BASPIA.htm

NOTES:

1) BASPIA: Beam Analogy for Soil-Pile group Interaction Analysis, © 1998 Kazuo KONAGAI,
I1S, University of Tokyo. All rights reserved.

2) This program uses EXCEL (Ver. 7.0 or EXCEL 98) as a post-processor. EXCEL must be
installed in your computer in advance. EXCEL and Windows are registered trade marks of
Microsoft Corporation.

3) The editor of BASPIA has been developed taking its prototype from ‘vbgrid.vbp’ by Haruhiko
HAYASHI in his book ‘Advanced Programming with Visual Basic’, SOFTBANK 1997
(ISBN4-7973-0473-1). No part of this program including this editor may be reproduced or
distributed in any form or by any means, or stored in a database or retrieval system, without the
prior written permission of Kazuo KONAGAI, Prof., 1S, University of Tokyo, the devel oper of
BASPIA.

INSTRUCTIONS FOR DOWNLOADING

(1) Visit the BASPIA download page:
http://norway.iis.u-tokyo.ac.jp/BASPIA.htm

(2 You can download both BASPIA and its manua (MS Word 97 document file).
They are archived by using ZIP.

(3) After getting them stored in an appropriate folder in your computer, double-click
them. And you get both automatically extracted in appropriate folders that you
designate.

(4 Among those files extracted, find ‘ setup.exe’. Double-click it, and you get BASPIA
installed just by following instructions displayed one after another.

(5) A password is needed to run BASPIA. The default password is ‘opensesame’. You
can change it from a hidden credits screen of BASPIA. This method, however, is
secret. If you want to get your own password, emal me at
konagai@iis.u-tokyo.ac.jp.
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BASPIA for Windows (Solver: TLEM ver. 1.2)

BASPIA (Beam Anaogy for Soil-Pile group Interaction Analysis) offers a
point-and-click Graphical-Users-Interface to TLEM (Ver. 1.2) that allows soil - pile
group interaction to be rigorously evaluated in the frequency domain. The original series
of TLEM programs (Vers. 1.0, 1.1 and 1.2, FORTRAN77) have been developed on the
basis of the Thin Layered Element Method for the analyses of soil-embedded
foundation interactions. Embedded foundations include upright vaults, mat foundations
and pile foundations as well.

Piles, grouped beneath a superstructure, interact with the surrounding soil during an
earthquake. Straight-forward evaluation of the pile-soil-pile interaction, however, is
cumbersome especialy in dealing with tens or hundreds of piles groped together. In
BASPIA for Windows (TLEM Ver. 1.2) a group of piles is viewed as an upright

Equivalent Single Beam.

When you click the BASPIA icon, you will see the following window popping up.

desziened and coded by Fazuo
KOMAGAL 115, University of Tokyo

all members of Konagai Lab, IS, Ui, Tokya |

Then, type the allotted password in the bottom text-box.



APPENDIX 79

And you will get the following tag “Post proc.” automatically clicked.
M BASPIL (EXCEL

D¥MEOH ice¥Excel

Though the original versions of TLEM provide a variety of output files, this version of
BASPIA for Windows allows you to examine dynamic (1) pile cap stiffnesses and (2)
effective input motions which are graphically displayed by using EXCEL as a
post-processor. EXCEL is thus needed to be installed in your computer in advance.
Check if the correct path is displayed in the bottom text box. If not, type the correct
path.

Then, click OK, and the third tab “BASPIA” comes up.
W EASPIA (EXCEL

D¥program files¥DevStudic¥y' E¥BASPLA

And you are ready to edit data files for BASPIA. Needless to say, you are not allowed in
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this stage to examine any output data without them. Click “Edit data files’ to start the
editor of BASPIA.

W Editting... O] x|

’79:' L L L] [J = J Hrrang= ,r_-i_l'.-_-_ J TEG e

ejjl== AT

[Fﬁﬁﬁﬁ?[ 3l

The following four data sets are to be prepared for running BASPIA for Windows.
1. soil

2. pile arrangement
3. pile properties

4. frequencies
Units of the necessary parameters should be consistent with each other.

The editor allows you to line-edit necessary data. See [Edit buttons] and [Key for
edition]

As the four data files are created in order, corresponding square check-boxes in the
upper right area of the window are checked one by one. After creating al four files, you
are adlowed to exit the editor and to run BASPIA for Windows. If you get lost in
editing files, use “What’s this?” Help ([?] button) that offers you important hints to
get rid of your trouble.

1. soil

Parameters describing soil properties must be given layer by layer:

Lamda (real lamda, imag. Lamda) = Lamda of Lames constants. Complex number. (tf/m?)
mu (real mu, imag. mu) = shear modulus of soil. Complex number. (tf/m?)

density = Density of soil. Real number. (tf s/m”)

depth = Depth of lower end of layer. Real number. (m)

2. pile arrangement
L ocations of piles are described in x-y coordinates. When inertia interaction is concerned, lateral
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force is assumed to be applied to a pile cap in x direction.

3. pile properties

Parameters describing pile proper ties must be given layer by layer:

outer radius = outer diameter of asingle pile (m)

inner radius =inner radius of asingle pile (m)

Young (Real Young, imag. Young) = Young's modulus of pile material. Complex number
(tf/m?)

density = density of pile material (tf s/m”)

4. frequencies
BASPIA for Windows provides frequency-domain solutions of important soil-structure

interaction parameters. It is therefore necessary to specify the following frequencies:

No of omegas = number of circular frequencies to be checked out. Integer value.

particular freq. = at this step of frequency-domain computation, a data file “space dsp.dat” storing
spatial distribution of soil displacement will be created.

initial omega = initial value of circular frequency

increment omega = incremental circular frequency

[Edit buttons]

Buttonsfor editing data files

line up Moves the selected line one grid unit up.

Line down Moves the selected line one grid unit down

insert line Inserts a new empty lineimmediately above the selected insertion line

delete line Deletes the selected line(s)

copy line Copies the selection (ling(s)) to the Clipboard.

Paste line Pastes the Clipboard contents immediately above the selected insertion
line

sort ascend Sortsin ascending order

sort descend Sorts in descending order

[Key for edition]

Start edition in the selected cell (Back color of the selected cell = white)

[Space] Starts edition in the selected cell with the cursor set at the head of the
existing string of letters

[Enter] Starts edition in the selected cell with the cursor set at the end of the
existing string of letters

[F2] = [Enter]

[Back space] Clears the selected cell and starts edition.

[Delete] = [Back space]

others Starts edition in the selected cell

Edit in the selected cell (Back color of the selected cell = yellow)

[Esc] Quits editing in the selected cell with everything undone.

[Enter] Quits editing in the selected cell
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[Up arrow] Quits editing in the selected cell, and moves one grid unit up
[Down arrow] Quits editing in the selected cell, and moves one grid unit down
[Others] Continues typing

When you returned from the Editor, you are now ready to run “BASPIA”. Click “Run
BASPIA” button.

®EasPla (EXCEL

L e N T

[:¥program files¥DevStudic¥y BE¥BASPIA

After running BASPI A, you will see the “Show result” button is enabled to be clicked.
# EASPIL (EXCEL

D¥program files¥DevSiudic¥y E¥BASPIL

Then, click “Show reslt” button, and you can examine the result by using EXCEL .

Good Luck'!
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July 12, 1999

Thin-L ayered-Element Method for Dynamic Sail - Pile Group
Interaction Analysis (Solver in BASPIA)

Kazuo KONAGAI

1. INTRODUCTION

This note has been prepared for the users of “TLEM” (Thin-L ayer-Element M ethod,
Ver. 1.2) that allows the soil - pile group interaction effects to be rigorously evaluated.
A pile group is assumed to be an upright single beam embedded in a horizontally
layered soil deposit with infinite extent.

2. WHAT CANWE DOWITH “TLEM”?

A soil-structure system is divided into two substructures, the super-structure and the
unbounded soil extending to infinity; the latter includes an embedded foundation as
illustrated in Fig. 2.1. In the lower substructure of soil, an earthquake will cause soil

displacements {u f} . The foundation embedded in this soil deposit, however, will not
follow the free-field deformation pattern. This deviation of the displacements from the
free-field soil displacements {u f} is denoted by {us} . The mass of the
super-structure then causes it to respond dynamically, and the forces {P  transmitted
to the lower substructure of soil and foundation will produce further deformation of soil
{ur} (inertia interaction) that would not occur in a fixed base structure. Thus, the

displacements of soil {u} are eventually expressed by the following equation as:

W=} £ o

In this program, TLEM, a pile group is approximated by a single beam with a circular
cross-section of radius R, embedded upright in a stratified soil, and this foundation is

Fig. 2.1 Two primary causes of soil-structure interaction
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excited in x direction. This assumption calls for the displacement components of the soil
and its inclusion to be proportional to either cos@ or sin@, and it will be shown later

on that displacements {ur} on the wall of the embedded foundation are described in
terms of displacement vectors, {v,} and {V} .
The interaction forces {p} (= { P, M,/ RO} mpT) from the super-structure causes the

inertia interaction motions {u‘} (= {v. v} topT) in the frequency domain as:

P
V.0 _H.(9 H (s)EE @ 02

V.0, H. H, (S)EEROE
H,(9) H, (90 4
(9 w9 M1

is the flexibility (compliance) at the top of the foundation, with s=i [ and i=\/—_1,

and w istheexcitement circular frequency.
This program provides the following pieces of information in the frequency domain:

1) FEreefield surface ground motion {u f} subjected to a sinusoidal shake given to

its bedrock
2) Foundation motions{uf} 4{ u} caused by the free-field ground motion {u f} .

3) Kinematic displacement factor T, for evaluation of the effective input motion
(uf + ur) at the top end of the foundation: (uf + ur) =T, [ surface. (2.4)
top top

where, (2.3

4) FElexibility components H,, - (FH,) and H, as well as gtiffness
components S, S, and S, atthehead of the foundation

3. FORMULATION

3.1 Sails

In TLEM, an infinite soil medium surrounding a pile foundation is described by using
the Thin-Layered Element Method, a semi-analytical finite element method devel oped
by Tajimi and Shimomura (1976). The major part of this section is, thus, an abridged
trandation of their original Japanese paper appeared in the Transaction of Architectural
Institute of Japan, 243, 1976.

The idealized soil-embedded foundation system is shown in Fig. 3.1. In the idealized
system, (1) the surrounding soil is divided into a number of homogeneous horizontal
sub-layers holding (2) acircular column which is made of the foundation and (3) the soil
beneath the bottom end of the foundation. (4) The mechanica features of the column
(pile group) are described on the basis of the hypotheses whose description (“3.2 Piles
Treated as a Single Upright Beam™) will follow this section, and the column has a
perfect contact with the surrounding soil. (5) In each sub-layer, linear variation of
displacement is assumed with respect to the depth, whereas, 3D equations of motion
describe outwardly propagating wave in the radial direction.
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O N

Fig. 3.1 Soil-Structure model

3-1 Motion of the Surrounding Soil

Many wave motion problems regarding soil-circular embedded foundation systems are
best described in terms of cylindrical coordinates. The governing equations are thus
given as.

2
(/\ 26)09 2G 0w, Zdeg :pd u2r S
or r 00 g, ot 0
2
(2 +2G)1‘9—@—2Gd 42697 = 0l F (3.1)
00 o, or ot 5
2, U
(/\+26)d@ 2G J (rw9)+Edw’ _pd uZZD
dz r or r 06 ot H
where,
10 10u, Jdu
=1 (ru )+ e+
ror r d8 o,
26 _10y, due, 2w, _du, _dy,
r o8 o, J, o,
10 10u
2w, = ——(ru, ) ———
? rdr( o) r 9o

Lame's constants A and G are complex numbers whose imaginary parts describe
internal damping of soil. The soil-foundation system is assumed to be excited in x
direction (Fig. 3.1), and the displacement components of soil are described in terms of
potential functions as.

(W 0 [cos6 0 v, O

0=0  siné % o (3.2)
FiL,H HO cos6y, H
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v, O EHZ(Z’(GV) Hy?(ay) 0 20
Re0=H,®(@y) -H,?(ay) 0 @E (33)
As 5 0 H,? (ay)BV(2DE

inwhich, H{?(ar) isthe second kind Hankel function of order j.

Substituting equations (3.2) and (3.3) into equation (3.1), one obtains:

2

a*G(e+9) -G (9+ 9) - paF (9+ § =0 (34)
, d? aw

a’(A +2G)@-¢)-G = (9-¢) +a(A +G)E -pw*(@ —¢9) =0 (3.5)
~a(A +G)%(§0 -¢) +a’GW —(A +G)d2;/;/ -Pw’W =0 (36)

S

il .

¢H
2
bbb iz
S

Fig. 3.2 Soil dlice

Layer boundary forces-displacements relationship is obtained by using Galarkin's
method. First, surface tractions in p-direction on both boundaries (j=1,2) of a

sub-layer with the thickness H are denoted by S, (Fig. 3.2). Unit nodal-point
displacement causes the sub-layer to be deformed into a prescribed shape of N, . Thus,

the equilibrium condition of virtual work is obtained by multiplying the equation of
motion (equation (3.4), (3.5) or (3.6)) by N, and integrating it over the entire extent of

the element H as:
I_HH//ZZ‘ N, Fdz={K,} "{u} -s, =0 3.7)
where, F, istheequation of motion, and
m/2-z/H  (j=1)
i THi2+2/H (j=2)
{ ij} = element stiffness matrix to be obtained,
{U} = nodal point (boundary surface) diisplacements.

Just for preliminary arrangement, stress components are described in terms of potential
functions:
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o, =GPV + 9V:H_ o le EwEH (2)(ar) e wEH ‘2>(ar)u
Odz odr Q0 z 2
Mov, ov,0 _dg «a

0,0 =G 2+ PA=G WH,? (ar) + - + W @(ar

© =590 o200 zng() EH()D
(h o v, ov, [ ov dw

o, =AF—(rv)+-2 +2 2 Z:Q\a -¢) +(A +2G E—((z)ar

“ Er_o"r( ) r odz0O 0z 0 -4)+( )dz @r)

(3.8), (3.9), (3.10)
Equations (3.8), (3.9) and (3.10) are rewritten in the following matrix form as:

&, 0 H,%@ay)-H"(ay) H,”(ay)+H,"(ay) 0 5

0
070 '
mm-zm‘z’(ay)m‘”(ay) H,? (ay) -H,? (ay) 0 .0
b0 g 0 0 2H,? (ay) NE

d = _gJd . dw
—G%—Z(w §)-awg  G,=G(o+9) . B =ap-4)+(1+26)

(3.11), (3.12)
From equation (3), displacements are aso described in similar manner as.

v,o  H%@y)-H?(ay) H,?(ay)+H,?(ay) 0 - ¢0)

U
5, = i @) + (@) 1. (@y) - R (@y) 0 + 45
N, 5 5 0 0 2H,? (ay) B
(3.13)

It is noted that matrices in equations (3.11) and (3.13) are identical with each other,
which fact eventualy allows Galarkin’s method (equation (3.7)) to be applled to the
transformed equations described in terms of the transformed traction (01 g, 03)

and the displacement ((p—w p+y W). The transformed tractions and the
displacements are described on the layer boundaries as:

0d 0d dw
&0 %'72(4" 9 O"MD@; 0 5(4’ ¢)|1D@’f 0 T aA(p-9), -(A +ZG)—dZ|1E
%ngzeﬂd D%zzl] © B%s% S aw S

(0 9~ Mg 5095770 § atlo=e), +0 201 .5

(3.14)
The transformed displacements within the sub-layer are described in terms of prescribed
shape functions N, and N, as:

(@O (@ 0
Enc gD N
EME .5

Asan exampl e, Galarkin’s method is applied to equation (3.5) in which equation (3.15)
is substituted. Equation (3.7) thusiswrittenfor j=1 as

N, :% + (3.15)

N

z z
H H
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f:/HH NlFlezaz(/\ +ZG)%( 1 _¢) (’\ +ZG) ( ¢2) +_( _¢1) "%((pz ‘¢2)

/\+G(V\/2_\M)_pw2%(¢l_¢l)—p ((Q @)+G§((P‘ﬂ

+a

(3.16)
A similar expression is obtained for j =2. From equation (3.14), these expressions for
j=1 and j =2 arearranged in the following matrix form as:

a*(r +20) 1 HR2 10 - ¢, 0 GB 1 -109 - ¢, O
H 2%/’2 ¢2D HT1 1%0 ¢ZD
(A G)/2 (A +G)/2EWVD o H2 106 -6.0 6,0

(/\+G)/2 (A G/2%’v 61 2h- 4.0 B

Similarly, one obtains the following equation from equation (3.4):

(az[p%]e HG]" -wM e){¢+¢}e { d (3.18)

H2 10 e_GO 1 -10
[G]" =

[A] _GH6H 2H H%—l 1%

M=ol o erdt =000

The above matrices with superscript e imply that they are expressions for a particular
sub-layer element. Using similar notations, transformed equations (3.5) and (3.6) are
written as:

(A eyt o4 ) 4 43
—a[B]*{p-¢ ° +[u 2[A]° + /\+ZG H- H‘ [M]° %V\& =

(3.19), (3.20)

(3.17)

where,

where,
gxg (A +2G)— g;@
e _A+2G0 1 -10 e _@-¢0
=00

0 (A-G)/2 (A+G)/2 O e W[
B =0 0, =
=0 0a)2 -0-epa M ThwA
The global equation of motion is then assembled with all element matrices provided. In
this procedure, the layer-boundary displacements are arranged in the following order as:
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{o-4=(a-td.g-6.. @ -¢)0

o
lo+d =(@+d.8+¢, @ +4) 0 (3.22)
0
W = (W, )’ g
in which, the subscripts, 1, 2, ... , N denote the numbers of layer boundaries starting

from the ground surface. The displacement vectors are rewritten by using simpler
notations as:

{o-g A% {op EIY{ I F 2 (322)
The global equations of motion are thus obtained by putting element matrices with the
superscript e at the proper positionsin the global matrix (Fig. 3.3) as:

(B’[A]+[6] -] M ¥ =0
(aZ[Ap] +[G] ~w] M]){x} -a[g]'{3 =0 (3.23), (3.24), (3.25)

-a[Bl{%} +(a’[A] +[G,] ~w’[M]KZ =0

L1

]

Fig. 3.3 Global matrix

The above equations are solved in the manner of an eigen-value problem, and it is noted
that equation (3.23), of which eigen values are denoted by [, is completely

independent of the mutually coupled equations (3.24) and (3.25) having the common
eigen-valuesof a . Elimination of {Z} inequations (24) and (25) leadsto:

(a%s, +a?s, +s, )% =0

s.=[al(d7) [A]

s =[Al{87) [e] +[a.]([87) [A] (326), (327)
-of[Al(87) M- M(8 ) [A)] (8]

s = (&) - M8 ") (& -« M)

A similar expression is also obtained by eliminating {X} :
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(a*s, +a’s, +8,)3 =0

s, =[A][8] TA]
N EREARSIERE

o [A )M -{M[ BT A FB’
= (o] - M)E*((e)] - «?[M])

Equation (3.26) iswritten in the following 2Nx2N characteristic equations:

S0 .6 0 gHXE
SZB—G B) _34% }E—O (3.29)

where, {)2} =a’{X}

Since equation (3.29) contains complex Lame's constants, 2N complex squared
eigen-values, a?, are obtained. This means that there exist total 4N solutions of o .
The condition that the soil displacement convergeson zero at r — o requires that the
appropriate eigen-values must have negative imaginary parts. Thus, imposing this
requirement yields the number of appropriate eigen-values to be cut by half (2N).

Boundary Conditions on the Upright Cylindrical Hollow

A foundation with a circular cross-section is assumed to be embedded upright in the
stratified soil. Thus, the force-displacement relationship is to be obtained on the wall of
the cylindrical hollow. Since the displacement components on the wall are proportional
to either cos@ or sin8, displacements are described intermsof (v, v, v,). Thus

displacement vectors, {V;} , {V}} ., {V} ., used in this formulation contain layer

boundary displacement components. These displacement vectors are expressed in terms
of theel gen-vectors of the stratified soil as:

v} =3 z{ P (@R)-H? @R} {¥ .a
5 2 {HOBR) 1O (BRI 0,
(v =53 {H@R) O @RHY
5 2 {HO (BR) -1 (BR} (0,
(v} =3 HO(@R)F 0,

where, {X} and {Z} _ are the mutually coupled eigen-vectors corresponding to an
eigen-value a, and the eigen-vector {Y} , corresponds to an eigen-value . The

(3.30)

I o A Y

effective contributions of these eigen-vectors are denoted by g, and qj, respectively.
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A modal matrix is defined as:
X=[04.0 % L X ]2
M =[0hY o] 0 (331
2=[34%. (7] 0

where, the dimensions of matrices [X] and [Z] are N x 2N, whereas that of [Z] is

N x N . Equation (3.30) is further simplified by virtue of the mathematical
conveniences of Hankel functions, which are described as:

H%(@ R)+H,"(@ R) _ 2 0
H(a R) = é
ar
0 0 (3.32)
Hz(Z)(a R))_ HO(Z)(a R)) Y O
H (@ R) T
aR =
H (2) (a R)) (2) (B R))
f,=1- —a 1 1gl- 2
~ _H" (a R)) ~ _  H(B R))
0, =0, aR, ) qﬁ_qﬁ—BR)

Introducing the newly defined parameters shown above, equation (3.30) is rewritten in
the following matrix form as:

v} O
D .
{vig d4[ R ]

It is assumed that the cross-section of the cyllndrlcal hollow is kept completely circle.
This assumption requires the following equation to be satisfied.

{v} +{v} =0 (3.34)
Substituting equation (3.34) in equation (3.33) yields:

[X][ 2+ 1. (@} +[Y][ 2+, J{a} =0 (3.35)
From equation (35), {d,} is described in terms of {Gﬁ} as.

a} = 1+ ™MIN] 2+ 1, @} =[Efa) (3.36)

where, matrix [E] has the dimension of N x 2N . Equation (3.33) is degenerated into
2N x2N matrix form as:
v} O %x][ fa | +[Y][ €U
a,r =|J.1q, (3.37)
02 e ] b
Tractions (p, p, Pp,) onthewall of the cylindrical cavity are expressed as:
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gyrrg [cos8 0 ORO
G -5  Sine )0
.4 B0 cosOHP, H

From equation (3.13), one can describe the tractions in terms of
displacements ¢—- ¢, @+ and W as
O o V, dv ov,
P=- rv,)+-2
' g\%_dr( )

r dzD

rDRO

(PG | @
%gHz (aR)-(A +2G)H, a%%p ¢)

2G

+ 22 H,P(BR )0+ ¢) - A5

/\d— H”(aR)

S

P, = _Gdeg _Vyty, E
dor ro O

H,% (a R )0 ~9)

=26
R,

(PG | ¢ 2
*Ee H (BR) -, (BR) {0+ 4

(Pv. oJv, 0O
P, =-GO— +—=0
Udz or 0. R

_%(H2<z>(aR0)_HO<2>(a RO)) (@ -9)
-2 (17(8R) -1, (8R) & (o4
Sl (o R)-H, o R

Given the above equations, resultant lateral force P,
My around y axis per unit depth are obtained as:

= y2 :

Px = —ZL/Z(U . Cosf —orgsme) R,d6
- zsz(e cos’ 0~ P, sin’ 6) R,d6
= mR,(P. - P,)

— _o¥?
= ZI_]/ZorZRocosGROdH

— Y2 2 —
—ZL/ZRRO cos’ 6d6 = R P,
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(3.38)

the transformed

(3.39)

(3.40)

(3.41)

in x direction and the moment

(3.42)

(3.43)
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P - P, = (A +26)aH,?(a R )@ ~¢)

£GP, (BR )9+ ) - 15 1O (aR)

The sub-layer boundary forces are then obtained by multiplying equations (3.42)-(3.44)
by the prescribed shape of displacement N, and integrating it over the entire thickness

(3.44)

of the sub-layer.
_ H/2 0
P, = nROJ'_H/Z N, (P - Pe)dzD
L 2 O (3.45)
ij=rROI_H/2NjPZdZ E

The obtained force-transformed displacement relationship is written in the following
element matrix form as:

3 jpyeofo IS AT R0

6 H 2Hx,H2H -1HF

GH EZ 1[|D(15_| @ BRO

1 DMy De G D- _1D:D(1 (2 2
o - H, —H,
oot e o WAL L)

LGO -100%0 @
Y20 - HH@ 2" (BR,)+Hy (ﬁRo))
GH 2 11,

il R ER)

These element matrices are then put in the proper locations in the globa matrix.
(P =R(-[AK ]
+[B, ]T[Z]["'a. [t} +rR(AIM[ 8 ]Nad

1 OM,
e DR D= BIBT T + A4 o JHf 2t i)
+ e T {a)
_/\Dl 10 _GDl 10
[B.]" 21 -1 [Be] 241 -14
These equations are rewritten in the following matrix form as:

AP} 8 AN o+ BT T2 o ] AT 8% JE)RE,
,ﬁ%% (] (X[t ]+ 8) (AL . ] EW

- [DH]{qa}

where,
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(3.46)
From equations (3.37) and (3.46), the following layer boundary force-displacement
relation is finally obtained.

P} O

e T s

0
[Ri]=R[DJ 3] 7F

3.2 Piles Treated as a Single Upright Beam

Piles, grouped beneath a superstructure, interact with the surrounding soil during an
earthquake, and the dynamic pile-soil-pile interaction often affects the motion of the
superstructure to a considerable extent. Straight-forward evaluation of the pile-soil-pile
interaction, however, is cumbersome especially in dealing with tens or hundreds piles
groped together. Hence some ssimplified approach for the evaluation of such dynamic
pile-soil-pile interaction is very much desirable for the purpose of treating the dynamic
behavior of an entire soil-foundation-structure system. A number of researches have
been carried out with the objective to develop such simplified approaches. These
attempts include the Ring-Pile method (Takemiya, 1986) and Closely-Spaced-Plates
model (Ohira and Tazo, 1985). In these methods, respectively, piles with the soil caught
among them are re-grouped into several concentric cylinders (piles arranged in
concentric circles) and soil-pile-striped upright plates, alowing close evaluation of
interaction effects to be made with less time and trouble. This chapter presents further
simplified approach in which a group of piles is viewed as a single equivalent upright
beam.

Stiffness matrix of equivalent single beam
Thesoil and n, pilessystemisdividedinto n;_ horizontal slices as shownin Fig. 3.4.

The following assumptions are tentatively adopted herein to derive the stiffness matrix

of the equivalent single beam:

(1) Pile elements within a horizontal soil slice are deformed all at once keeping their
intervals constant, and the soil caught among piles moves in a body with the piles.
The cross-section, A, of the equivalent single upright beam, thus, comprises both

the firmly joined piles and the soil.

(2) Frictional effects due to bending of piles (external moments on each pile from soil)
areignored.

(3) Top endsof the piles are fixed to arigid cap.

(4) All upper or lower ends of the sliced pile elements arranged on the cut-end of a soil
glice remain on one plane (Note this assumption does not necessarily mean that
each pile's cross-section remains in parallel with this plane. See Fig. 3.4(b)).
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cenFroi d

— remain on one plane
n, piles

Fig. 3.4 Assumption for evaluation of equivalent single beam

With assumptions (1), (2) and (3), lateral external forces {P} are described in terms
of |ateral displacements {u,} and anti-symmetric vertical motion of thecap w; as:
T
] Ow, . 08
Pt =L ' ust+g= : 0 - 000 (3.48)
(Y =110 o o)+ ok
where, R, istheradius of the equivalent single beam, and is assumed to be identical to
the radius of a circle with the same area as the cross-section A, that includes all the

grouped piles enclosed by the broken linein Fig. 3.4a, and

01 1 ]
gL 1.1 1 :

Oh b h b O (3.49a)
Do 1r 1. 11 o
[L]=0 h,  h hy b 0
0o 0 s 0 O
ik — 8
O M g
0o 0 1 1 1pg
H hha Mo hH
phoh 0 0 o 7
OE, El, .
oh b hHh ]
0 0

h Hh b H b
[D]:%S 0 B, B, B0, 0
. 0 E : 0 .
0 h“q_—l 0
B B, D
) 0 M 2Eh+iﬁ
El El, E

H » OF, ELH
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with El,=n,xE_I, (E,l, =bending stiffness of asingle pile).
Moment M, at the top ends of rigidly capped piles due to the lateral displacements
{u} isexpressedas:

M, ={1st row of matrix [D] | L]} {u} " +D} @I;V—: (3.49¢)

where, D;; = upper-left corner component of the matrix, [D] ™

Assumption (4) implies that the overall anti-symmetric rocking motion of a pile group
is controlled by axial motions of the piles. In other word, the external moments on the
overal soil-pile system from its surrounding soil are eventualy sustained by the piles
that experience aternate push and pull in their axes. Externa moments due to the
anti-symmetric vertical motions {w} are described as:

DM D
DROD [Q]{W} (3.50)
where,
0El® El ¢ 0
00— -— 0 0 0 0
0Ro hl Ry"hy 0
D EI® EI°® E° ElC 0
+ - > O D
D R’h,  R’h, Ro h, Ry"h, 0
0 0 _EI° EI® EI° El ¢ 0O (351
[Q]=F h 2 "R*h. R’ J
O R0 2 R0 2 Ro 3 Ro 3 O
o o 0 0 0
O El© O
0 -— 0
E Roh, - B
G G G
9 o 0 _El EI® | El g
E R’h, o R'h, . R’h J

where, EI® isthe bending stiffness of the equivalent single upright beam. This EI ©
is evaluated following the same procedure as that used for the evaluation of bending
stiffness of a reinforced concrete beam. Namely, EI € is assumed to be equa to the
sum of the Y oung' s-modulus-weighted products of all the elementary areas times their
distances squared from the centroid of the cross-section A, (Fig. 2.4a).

Given eguations (3.48)-(3.51), the globa stiffness matrix of the equivalent single
beam isfinally expressed as:

0 0O S [LId_{L] 1st column of [LId_l/RO and U
%Px H O zerosfor other columns %“x E
= I B Ry ..
BMB %st row of [D] [L] /R, and Dt and[Q] %WE
.0 erosfor other rows - H (3.52)

= [FH]

EEE o
g
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The global equations of motion for the entire upright single beam are thus obtained as:
F wlM =
(F-Tm 1)) =13
where, {B =( T MR )T: external force vector.

Finally, the equations of motion for the entire soil-foundation system are obtained by
combining equation (3.47) with the above equations of the upright column’s motion

(v = v} and {v} H{ ¢ )as
(R +[Fd “’TM])?}D {P}E (3.53)
RI=R[DJ3] 0

Given the motions of the upright column from equation (3.53), displacements at an
arbitrary point (r,8) in the surrounding soil are obtained by solving the following

/g

Avi H g

equation:

“h, (r) CF,. ] [Y][ hy * (1)
h, * (). ] [Y][ hy(r) .
[Z][ . * (r) e |

Gl

[E][jZﬂJ] g\/ié (354)

Z

D

where,

H,” (ar) - H,?(ar) O

H,? (@Ry) - H,? (@R,) &
H,"” (ar) + H,” (ar) B
H,? (aR,) + H,® (@R,)
H,?(ar) R .
H2(aR,) 1 H

h, and h;* areobtamed by simply replacing a in equations (3.55) with (3.

h, (r) =

h, *(r) = (3.55)

Pile Deflection Caused by the Motion of the Surrounding Soil

It is assumed that a virtual soil foundation having the same size and shape of an actual
foundation is embedded in the soil, and the response of the virtual soil foundation is
obviously identical to the free-field ground motion. We now consider an actua
foundation whose stiffness and mass are cut down by the quantities that offset this
virtual soil foundation. This procedure leads both the stiffness and mass matrices to be
modified as:

[FO[F A MO M,

The change in [FH] , however, turns out to be extremely small in many cases
encountered, and can be ignored. The presence of this foundation with [F,] ([F, *]
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correctly) and [M,, *] then causes the ground motion {V,} at the soil-foundation

interface to deviate from the free-field ground motion {V, % , and the equations of
motion are written in the following form as:

(F]-wM, ]%V}D IR ]%ﬁg D{q (356

where, [R,]=mR[D.J 3]~  (Seeequation (3.47))
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4. Data Files

TLEM1.2 requires four input data files to be provided. Among these files,
“equi_stiff.dat” stores parameters describing a single upright beam which approximates
closely the behaviors of a pile group. A program, “pile_param.exe’, saves a lot of
trouble creating parameters for “equi_stiff.dat”. This program requires (1) LAYER.dat
(5) ARRANGE.dat and (6) PILEPRM .dat.

After running TLEM1.2, 14 output data files are created on the same directory where
TLEM1.2 exsits.

(1) LAYER.dat (5) ARRANGE.dat || (6) PILEPRM .dat

| |
pile_param.exe
]

(2) FREQ.dat] | (3)SDISP.dat|| (4) equi_stiff.dat
| | |

TLEM 1.2

(1)vib_mode.dat

(2) eff_motion.dat

(3) deflec_Px.dat, (4) deflec_M .dat, (5)deflec_Vx (6)deflec_Vx
(7)deflec_Fr.dat, (8)react_Px.dat, (9) react M .dat (10) react Vx.dat
(12) react_Vzdat (12) react_Fr.dat (13) top_stf.dat

(14) top_flx.dat

(15) stf_rock.dat

(16) space_dsp.dat
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4.1 Input data files
(1) LAYER.dat
This datafile provides the parameters that describe mechanical features of soil slices.

<-1->
10

P ) R SRS (TR, T Sy SRR, TR CyRE, T SR © R Sy R -
4.80e4 4.80e3 9.79e2 9.79%1 0.153 2.0
4.80e4 4.80e3 9.79e2 9.79%1 0.153 4.0
4.80e4 4.80e3 9.79e2 9.79%1 0.153 6.0
4.80e4 4.80e3 9.79e2 9.79%1 0.153 8.0
4.80e4 4.80e3 9.79e2 9.79%1 0.153 10.0
4.80e4 4.80e3 9.79e2 9.79%1 0.153 12.0
4.80e4 4.80e3 9.79%e2 9.79%1 0.153 14.0
4.80e4 4.80e3 9.79e2 9.79%1 0.153 16.0
4.80e4 4.80e3 9.79e2 9.79%1 0.153 18.0
4.80e4 4.80e3 9.79e2 9.79%1 0.153 20.0

where,

<-1-> (15): Number of soil slices,

<-2-> (F10.7): Readl partof A (Lame'sconstant: tf/m?) for each soil slice,
<-3-> (F10.7): Imaginary part of A (Lame's constant: tf/m?) for each soil slice,
<-4-> (F10.7): Red partof U (shear modulus: tf/m? for each soil slice,

<-5-> (F10.7): Imaginary part of i (shear modulus: tf/m®) for each soil slice,
<-6-> (F10.7): density of U (shear modulus: tf/m?) for each soil slice,
<-7-> (F10.7): depth of slice boundary (m)

(2) FREQ.dat
TLEM provides solutions in the frequency domain. The following index parameters
must be provided:

<=1-><-2-><——=-3-—--><——-A————>
63 14 1.0 1.0
where,

<-1-> (15): Number of stepwize increases of circular frequency

<-2-> (15): Some large data files (space _dsp.dat etc.) are created at this step of increasing
frequency

<-3-> (F10.7): Initial value of circular frequency

<-4-> (F10.7): Increment of circular frequency

(3) SDISP.dat
This data file "SDISP.dat" provides necessary parameters for storing spatial variation of
soil displacements.

<=1-><-2-><-3-><~=-4———-><~—-5——_>
1 4 10 1.000 0.100
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where,
<-1-> (I15): IDR: direction of displacement component (IDR=1:radial, 2:tangential, 3:vertical)
<-2-> (15): KF: direction of applied force or displacement
KF=1: Lateral unit force is applied
KF=2: Moment/R, (=1.0) is applied
KF=3: Lateral unit displacement is given keeping rotation zero
KF=4: Unit rotation is given keeping lateral displacement zero
<-3-> (15): Number of stepwise increases of radial diatance
<-4-> (F10.7): Initial value of radial distance r/ R,

<-5-> (F10.7): Increment of radial distanceAr / R,

(4) Equi_stiff.dat

As has been explained in Section 3.2, a pile group is treated as a single upright beam
described in term of representative parameters, R,, El, and El ¢ (equations (3.49b)
and (3.51)). These parameters for al diced beam elements are provided by a data file
“equi_stiff.dat”. This data file aso provides the masses of the dliced elements which
are used in the mass matrix [M,]

<——l---—>
.288E+01
€23 ———>

.245E+06 .000E+00 .160E+08 .000E+00 .350E+01
.245E+06 .000E+00 .160E+08 .000E+00 .350E+01
.245E+06 .000E+00 .160E+08 .000E+00 .350E+01
.245E+06 .000E+00 .160E+08 .000E+00 .350E+01
.245E+06 .000E+00 .160E+08 .000E+00 .350E+01
.245E+06 .000E+00 .160E+08 .000E+00 .350E+01
.245E+06 .000E+00 .160E+08 .000E+00 .350E+01
.245E+06 .000E+00 .160E+08 .000E+00 .350E+01
.245E+06 .000E+00 .160E+08 .000E+00 .350E+01
.245E+06 .000E+00 .160E+08 .000E+00 .350E+01

where,

<-1-> (F10.7): Radius of the pile-group-equivalent single upright beam, R, (m).

<-2-> (F10.7): Red partof EI,(tf m?) for each sliced element.

<-3-> (F10.7): Imaginary part of EI (tf m’) for each sliced element.

<-4-> (F10.7): Real part of El ©(tf m?) for each sliced element.

<-5-> (F10.7): Imaginary part of El © (tf m?) for each sliced element.
<-6-> (F10.7): mass of each sliced element (tf s/m).

It actually takes time to obtain above mentioned parameters for pile groups. A program,
“pile_param.exe”, alows preparation of “equi_stiff.dat” to be made with less time and
effort. This program requires (1) LAY ER.dat and the following input data files:
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(5) ARRANGE.dat
This data file “ARRANGE.dat” provides arrangement of piles grouped beneath a rigid

pile cap.

<-1->

AN

|

|

I
N

|

|

|

I
Vv
AN

|

|

I
w

|

|

|

I
Vv

A WOWPFRPOPMNWPFPROPMWEPLOMOWE,EO
U1 O U1l O U1 O U1 O U1 ©O Ul © U1 O U1 O
A AP OCLOWLWWRREPREPL,PEPOOOO
U101 01 o1 O O O O Ul Ul Ul o1l O O O O

where,

<-1-> (15): number of piles

<-2-> (F10.7): xcoordinate (m) (NOTE: pilesare excited in x direction).
<-3-> (F10.7): y coordinate (m).

(5) PILEPRM .dat
Thisdatafile“PILEPRM .dat” provides mechanical properties of diced pile e ements.

<e—-]-—--><-—-2— - ><—-F-——>< - -><——-F___>
0.3000 0.2910 2.1e7 0.0 0.801
0.3000 0.2910 2.1e7 0.0 0.801
0.3000 0.2910 2.1e7 0.0 0.801
0.3000 0.2910 2.1e7 0.0 0.801
0.3000 0.2910 2.1e7 0.0 0.801
0.3000 0.2910 2.1e7 0.0 0.801
0.3000 0.2910 2.1e7 0.0 0.801
0.3000 0.2910 2.1e7 0.0 0.801
0.3000 0.2910 2.1e7 0.0 0.801
0.3000 0.2910 2.1e7 0.0 0.801
0.3000 0.2910 2.1e7 0.0 0.801
0.3000 0.2910 2.1e7 0.0 0.801
0.3000 0.2910 2.1e7 0.0 0.801
0.3000 0.2910 2.1e7 0.0 0.801
0.3000 0.2910 2.1e7 0.0 0.801

where,

<-1-> (F10.7): outer radius of sliced pile element (m)

<-2-> (F10.7): inner radius of dliced pile e ement (m)

<-3-> and <-4-> (F10.7): Real and imaginary parts of Young's modulus of dliced pile
element (tf/m?)

<-5-> (F10.7): density of pile (tf/m* s/m)
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4.2 Output data files

(1) vib_mode.dat
This data file, “vib_mode.dat”, stores the deflection of pile group caused by free-field

ground motion (V, "™ and V. in equation (3.56)).

<o 1-———- DY 2-————— DY 3————— DY e —— DY [ DY 6--———- >
-1000E+01 .0000E+00 .1032E+01 -.3248E-02 .1032E+01 -.3249E-02
-1000E+01 -2000E+01 .1031E+01 -.3209E-02 .1031E+01 -.3216E-02
-1000E+01 .4000E+01 .1030E+01 -.3108E-02 .1030E+01 -.3118E-02
-1000E+01 .6000E+01 -1029E+01 -.2944E-02 -1029E+01 -.2953E-02
-1000E+01 .8000E+01 .1026E+01 -.2713E-02 .1027E+01 -.2723E-02
-1000E+01 -1000E+02 .1024E+01 -.2416E-02 .1024E+01 -.2428E-02
-1000E+01 .1200E+02 .1020E+01 -.2051E-02 .1020E+01 -.2068E-02
-1000E+01 -1400E+02 -1016E+01 -.1619E-02 -1016E+01 -.1644E-02
-1000E+01 .1600E+02 .1011E+01 -_.1124E-02 .1011E+01 -_.1155E-02
-1000E+01 -1800E+02 -1006E+01 -_.5770E-03 -1006E+01 -.6039E-03
.2000E+01 .0000E+00 .1137E+01 -.1530E-01 .1137E+01 -.1532E-01
-2000E+01 -2000E+01 -1136E+01 -.1512E-01 -1136E+01 -.1516E-01
.2000E+01 .4000E+01 .1131E+01 -.1463E-01 .1132E+01 -.1468E-01
-2000E+01 .6000E+01 .1124E+01 -.1383E-01 .1125E+01 -.1388E-01
.2000E+01 .8000E+01 .1115E+01 -.1273E-01 .1115E+01 -.1278E-01
-2000E+01 -1000E+02 .1102E+01 -.1131E-01 .1102E+01 -.1136E-01
.2000E+01 .1200E+02 .1087E+01 -.9571E-02 .1087E+01 -.9646E-02
-2000E+01 o T -.7534E-02 -1069E+01 -.7638E-02
1049E+01 -
where,

<-1-> (E15.7): circular frequency
<-2-> (E15.7): depth (m)
<-3-> (E15.7): real part of deformation of pile group, V,

f+s

(m)
<-4-> (E15.7): imaginary part of deformation of pile group, VrHS (m)
<-5-> (E15.7): read part of free-field ground motion, Vrf (m)

<-6-> (E15.7): imaginary part of free-field ground motion, Vrf (m)

(2) eff_motion.dat
This datafile “eff_motion.dat” stores transfer functions (kinematic displacement factor
T, and T_,) for evaluation of effective input ground motion.
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(e e S Dmmmmem S Pemmmem S Almmmmee S B >
.1000E+01 .1000E+01 .1284E-05 .9019E-04 -.1188E-04
.2000E+01 -9999E+00 .9613E-05 .3612E-03 - .4753E-04
.3000E+01 .9997E+00 .3939E-04 .8144E-03 -.1070E-03
.4000E+01 .9993E+00 .1199E-03 .1452E-02 - .1905E-03
.5000E+01 .9985E+00 .3214E-03 .2279E-02 -.2986E-03
.6000E+01 .9968E+00 .1083E-02 .3305E-02 - .4383E-03
.7000E+01 .9963E+00 .3297E-02 .4498E-02 - .6296E-03
_8000E+01 0057E+00 .4280E-02 .5872E-02 - .8202E-03

.5212E-02 .7442E-02 -.1027E-0"
where,

<-1-> (E15.7): circular frequency
<-2-> (E15.7) and
<-3-> (E15.7): Real and imaginary parts of kinematic displacement factor T, for
evaluation of the effective input sway motion at the top end of the foundation:

.= )
<-4-> (E15.7) and
<-5-> (E15.7): Rea and imaginary parts of kinematic displacement factor T,, for

evaluation of the effective input rocking motion at the top end of the foundation:
— f r f _ r f
Te,x - (VZ +VZ )top /(Vr )surface - (VZ )top /(Vr )surface

(3) deflec_Px.dat, (4) deflec_M .dat, (5) deflec_Vx, (6) deflec_Vx and (7) deflec_Fr
Datafiles “deflec_Px.dat”, “deflec M .dat”, “deflec_Vx.dat” and “deflec_Vz.dat store
vibration modes of a pile group subjected to an unit lateral force, unit moment,
M, / R,=1, unit displacements V, =1 and V,=1, respectively, applied to its pile cap. ”
Data file deflec Fr.dat stores relative displacements between the pile group and
far-field soil

f
/ Vr surface
top

(Emmme lomeeee S Do S G S Al S [P S 6-————- >
.1000E+01 .0000E+00 .3654E-04 -.3159E-05 .1621E-05 -.1724E-06
.1000E+01 .2000E+01 .2886E-04 -.2751E-05 .1310E-05 -.1549E-06
.1000E+01 .4000E+01 .1830E-04 -.2004E-05 .1095E-05 -.1364E-06
.1000E+01 .6000E+01 .1083E-04 -.1282E-05 .9179E-06 -.1181E-06
.1000E+01 .8000E+01 .6501E-05 -.7626E-06 .7597E-06 -.1004E-06
.1000E+01 .1000E+02 .4096E-05 -.4471E-06 .6129E-06 -.8314E-07
.1000E+01 .1200E+02 .2666E-05 -.2682E-06 .4750E-06 -.6616E-07
.1000E+01 .1400E+02 .1699E-05 -.1633E-06 .3451E-06 -.4939E-07
.1000E+01 .1600E+02 .9818E-06 -.9438E-07 .2228E-06 -.3278E-07
.1000E+01 A *9RFE-06 -.4315E-07 .1078E-06 =187

== NR 1R1 0™
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where,

<-1-> (E15.7): circular frequency

<-2-> (E15.7): depth (m)

<-3-> (E15.7): real part of sway motion of pilegroup V, (m)
<-4-> (E15.7): imaginary part of sway motion of pilegroup V, (m)
<-5-> (E15.7): real part of vertical motion V, (m)

<-6-> (E15.7): imaginary part of vertical motion V, (m)

(8) react_Px.dat, (9) react_M .dat, (10) react_Vx.dat, (11) react_Vz.dat and

(12) react_Fr.dat

Data files “react_Px.dat”, “react M.dat”, “react_Vx.dat” and “react_Vz.dat” store
reaction forces from the soil surrounding a pile group subjected to an unit lateral force,
unit moment, M, / R,=1, unit displacements V, =1 and V,=1, respectively, applied to

its pile cap. Datafilereact_Fr.dat stores kinematic interaction forces.

<mmmmm 1--——-- S<om e 2-————- S<mm e 33— S 4 m e S B S<mm e 6--———- >
.1000E+01 .0000E+00 .4159E+00 .1016E-01 .1140E+00 .2307E-02
.1000E+01 .2000E+01 .4517E+00 .2759E-02 .9328E-01 .9282E-03
.1000E+01 .4000E+01 .1530E+00 - .7822E-02 .3651E-01 -.2419E-03
.1000E+01 .6000E+01 .2252E-01 - .5780E-02 .1813E-01 - .5195E-03
.1000E+01 .8000E+01 -.1342E-01 - .1746E-02 .1098E-01 - .4298E-03
.1000E+01 .1000E+02 -.1479E-01 .4071E-03 .8540E-02 - .2868E-03
.1000E+01 .1200E+02 - .8879E-02 .8773E-03 .7752E-02 -.1964E-03
.1000E+01 .1400E+02 - .3916E-02 .6195E-03 .7357E-02 -.1525E-03
.1000E+01 .1600E+02 -.4989E-03 .2450E-03 .6935E-02 -.1331E-03
.1000E+01 .1800E+02 .2493E-02 .7824E-05 .7039E-02 -.1674E-03
.2000E+01 .0000E+00 .4160E+00 .1015E-01 .1141E+00 .2302E-02
.2000E+01 .2000E+01 .4519E+00 .2752E-02 .9342E-01 .9130E-03
.2000E+01 .4000E+01 .1532E+00 - .7835E-02 .3673E-01 -.2679E-03
.2000E+01 .6000E+01 .2267E-01 - .5796E-02 .1841E-01 - .5526E-03
onnnT - el -.1761E-02 .1128E-01 - .4670E-03

"ORQE-03 .8859E-02 -.30REF ~
where,

<-1-> (E15.7): circular frequency

<-2-> (E15.7): depth (m)

<-3-> (E15.7): real part of lateral reaction P, (tf)

<-4-> (E15.7): imaginary part of lateral reaction P, (tf)
<-5-> (E15.7): red part of restoring moment M, /R, (tf)

<-6-> (E15.7): imaginary part of restoring moment M, IR, (tf)

(13) top_stf.dat
Thisdatafile “top_stf.dat” stores pile cap stiffness S, S, (=S,)and S, .
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< 1. >< 2 >< 3 >< 4. ><. 5 < 6 >< 7 >
J000E+01 2744405 .2343E+04  -.6224E+04  -.8212B+01  .1400E+06  .2949E+04
2000E+01  .2714E+05  .2352F+04  -.6141E+04  -.1584E+02  .1399E+06  .2954E+04
.3000E+01  .2660E+05  .2375E+04  -.5980E+04  -.3131E+02  .1307E+06  .2963E+04
J000E+01 2572405 .2429E+04  -.5739E+04  -.6209E+02  .1394E+06  .2980E+04
S000E+01  .2425E+05 ~ .25Q2F+04  -.5314E+04  -.1365E+03  .1301E+06  .3016E+04
.6000E+01  .2127E+05  .3625E+04  -.4430E+04  -.5057E+03  .1385E+06  .3153E+04
T000E+01  .2079E+05 ~ .8581E+04  -.4403E+04  -.2051E+04  .1381E+06  .3648E+04
.8000E+01  .2289F+0% 1RAEH05  -.4966E+04  -.2682E+04  .1378E+06  .3863E+04
.annn- ST 3072E+04  L1374E406 LA031EHV

where,

<-1-> (E15.7): circular frequency

<-2-> (E15.7): red partof S, (tf/m)

<-3-> (E15.7): imaginary partof S, (tf/m)

<-4-> (E15.7): red patof S, (=S, ) (tf/m)

<-5-> (E15.7): imaginary partof S, (=S, ) (tf/m)

<-6-> (E15.7): real patof S, (tf/m)

<-7-> (E15.7): imaginary part of S,, (tf/m)

(14) top_fIx.dat
This datafile “top_flx.dat” stores pile cap flexibility H,,, H, (=H,)and H

< 1. ><: 2 >< 3 ><: 4 >< 5 ><: 6 >< 7 >
.1000E+01  .3654E-04  -.3159E-05 JA621E-05  -.1724E-06  .7211E-05  -.1595E-06
2000E+01  .3693E-04  -.3239E-05 1618E-05  -.1722E-06  .7216E-05  -.1597E-06
.3000E+01  .3766E-04  -.3400E-05 JA611E-05  -.1715E-06  .7223E-05  -.1602E-06
.A000E+01  .3889E-04  -.3708E-05 A599E-05  -.1694E-06  .7234E-05  -.1609E-06
.5000E+01  .4111E-04  -.4422E-05 JA572E-05  -.1627E-06  .7248E-05  -.1619E-06
.6000E+01  .4600E-04  -.7828E-05 A500E-05  -.1172E-06  .7266E-05  -.1637E-06
T000E+01  .4143E-04  -.1694E-04  .1574E-05  .3389E-07 .T287E-05  -.1680E-06
.8000F+01 St e ARROE-07 .7311E-05  -.1709%-06

where,

<-1-> (E15.7): circular frequency

<-2-> (E15.7): red partof H, (mitf)

<-3-> (E15.7): imaginary partof H, — (mitf)

<-4-> (E15.7): real patof H,, (=H,) (m/tf)

<-5-> (E15.7): imaginary partof H,, (=H,) (m/tf)

<-6-> (E15.7): red patof H, (mitf)

<-7-> (E15.7): imaginary partof H, (mvtf)

z"
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(15) stf_rock.dat
This data file “stf_rock.dat” stores restoring moment for a particular case of a rigid
massl ess foundation rocking on a bedrock.

<o 1-———- DY 2-————— DY 3————— >
.1000E+01 .1631E+08 .1642E+07
.2000E+01 .1600E+08 .1643E+07
.3000E+01 .1543E+08 .1649E+07
.4000E+01 .1455E+08 .1673E+07
.5000E+01 .1316E+08 .1766E+07
.6000E+01 .1059E+08 .2411E+07
.7000E+01 .9192E+07 .5942E+07
.8000E+01 .9463E+07 .8001E+07
- -9607E+07 .9515E+07

R .
where,

<-1-> (E15.7): circular frequency
<-2-> (E15.7): red part of restoring moment M, /R, (tf)

<-3-> (E15.7): imaginary part of restoringmoment M,/ R, (if)

(16) space _dsp.dat
This data file “space dsp.dat” stores spatia variation of soil displacements. As has
been mentioned, "SDI SP.dat" provides the following necessary parameters for storing
gpatial variation of soil displacements.
<1> IDR: direction of displacement component (V, (IDR=1), V, (IDR=2)or V, (IDR=3))
<2>KF: direction of applied force or displacement

KF=1: Lateral unit force is applied

KF=2: Moment/R, (=1.0) is applied

KF=3: Lateral unit displacement is given keeping rotation zero

KF=4: Unit rotation is given keeping lateral displacement zero
<3> (15): Number of stepwise increases of radial diatance
<4> (F10.7): Initial value of radial distance r / R,

<56> (F10.7): Increment of radial distancelAr / R,

Zomemeo | P S D P S P Py S /| >
.2880E+01 .0000E+00 -.1348E-15 .5787E-17
.2880E+01 .2000E+01 -.3404E+00 .4228E-01
.2880E+01 .4000E+01 -.3105E+00 .1051E+00
.2880E+01 .6000E+01 -.2018E+00 .1482E+00
.2880E+01 .8000E+01 -.1130E+00 .1686E+00
.2880E+01 .1000E+02 -.6000E-01 .1715E+00
.2880E+01 .1200E+02 -.3502E-01 .1603E+00
.2880E+01 .1400E+02 -.2690E-01 .1367E+00
.2880E+01 .1600E+02 -.2473E-01 .1009E+00
.2880E+01 .1800E+02 -.1764E-01 .5411E-01
.3168E+01 .0000E+00 -.8249E-02 .1562E-02
.3168E+01 .2000E+01 -.3194E+00 .4389E-01
.31RRE" 7 ’ -.2934E+00 .1054E+00

TOF+00 -1481E+00
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where,

<-1-> (E15.7): radia distance r (M)

<-2-> (E15.7): depth z (m)

<-3-> (E15.7): real part of displacement (V, (IDR=1), V, (IDR=2)or V, (IDR=3)) (m)
<-4-> (E15.7): imaginary part of displacement (V, (IDR=1), V, (IDR=2) or V, (IDR=3))

(m)
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5. Numerical Examples

Steel pile groups

Steel piles (Table 5.1) grouped together beneath a rigid massless pile cap are embedded
in a homogeneous soil deposit (Table 5.2) overlying arigid bedrock.

Table5.1 Parametersfor steel piles

E, (tf/m°) P, (/M) ro(m) thickness (m) length (m)

2.1x10’ 7 0.3 0.0089 20

Tableb5.2 Parametersfor soil
P, (/M) v, (m/s) v thickness (m)
15 80 0.49 20

The soil deposit with the inclusion of piles is cut equally into 10 slices. Piles are
arranged side by side in sguares with equal interval of 2.5 times as large as the pile
diameter. Two pile groups (2x2 and 3x3, Fig. 5.1) are discussed herein.

OO0 00O
c>£ﬁd O0O0
s 00O

Fig. 5.1 pile groups

Prepared input data files
(1) LAYER.dat

10

4.80e4 4.80e3 9.79e2 9.7%1 0.153 2.0
4.80e4 4.80e3 9.79e2 9.79%1 0.153 4.0
4.80e4 4.80e3 9.79e2 9.7%1 0.153 6.0
4.80e4 4.80e3 9.79e2 9.7%1 0.153 8.0
4.80e4 4.80e3 9.79e2 9.79%1 0.153 10.0
4.80e4 4.80e3 9.79e2 9.7%1 0.153 12.0
4.80e4 4.80e3 9.79e2 9.79%1 0.153 14.0
4.80e4 4.80e3 9.79e2 9.79%1 0.153 16.0
4.80e4 4.80e3 9.79e2 9.7%1 0.153 18.0
4.80e4 4.80e3 9.79e2 9.79%1 0.153 20.0

(2) FREQ.dat
63 15 1.0 1.0

(3) SDI SP.dat
1 4 10  1.000  0.100
(4) equi_stiff.dat (See next page).
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(5) ARRANGE.dat
2% 2 piles 3x 3piles
4 9
0.0 0.0 0.0 0.0
1.5 0.0 1.5 0.0
0.0 1.5 3.0 0.0
1.5 1.5 0.0 1.5
1.5 1.5
3.0 1.5
0.0 3.0
1.5 3.0
3.0 3.0
(6) PILEPRM .dat
0.3 0.291 2.1e7 0 0.801
0.3 0.291 2.1e7 0 0.801
0.3 0.291 2.1e7 0 0.801
0.3 0.291 2.1e7 0 0.801
0.3 0.291 2.1e7 0 0.801
0.3 0.291 2.1e7 0 0.801
0.3 0.291 2.1e7 0 0.801
0.3 0.291 2.1e7 0 0.801
0.3 0.291 2.1e7 0 0.801
0.3 0.291 2.1e7 0 0.801
(4) equi_stiff.dat
2x 2 piles
.118E+01
.613E+05 .000E+00 .851E+06 .000E+00 .555E+00
.613E+05 .000E+00 .851E+06 .000E+00 .555E+00
.613E+05 .000E+00 .851E+06 .000E+00 .555E+00
.613E+05 .000E+00 .851E+06 .000E+00 .555E+00
.613E+05 .000E+00 .851E+06 .000E+00 .555E+00
.613E+05 .000E+00 .851E+06 .000E+00 .555E+00
.613E+05 .000E+00 .851E+06 .000E+00 .555E+00
.613E+05 .000E+00 .851E+06 .000E+00 .555E+00
.613E+05 .000E+00 .851E+06 .000E+00 .555E+00
.613E+05 .000E+00 .851E+06 .000E+00 .555E+00
3x 3piles
.203E+01
.138E+06 .000E+00 .488E+07 .000E+00 .171E+01
.138E+06 .000E+00 .488E+07 .000E+00 .171E+01
.138E+06 .000E+00 .488E+07 .000E+00 .171E+01
.138E+06 .000E+00 .488E+07 .000E+00 .171E+01
.138E+06 .000E+00 .488E+07 .000E+00 .171E+01
.138E+06 .000E+00 .488E+07 .000E+00 .171E+01
.138E+06 .000E+00 .488E+07 .000E+00 .171E+01
.138E+06 .000E+00 .488E+07 .000E+00 .171E+01
.138E+06 .000E+00 .488E+07 .000E+00 .171E+01
.138E+06 .000E+00 .488E+07 .000E+00 .171E+01
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5.1 Deflection of pile group caused by free-field ground motion (vib_mode.dat)

Fig. 5.2a shows the real part of the soil response to sine shake given to its bottom end
(bedrock); the motion is referred to as the “free-field ground motion”. The grouped piles

(3x 3) are flexible enough to follow closely the free-field ground motion in a low
frequency range (Fig. 5.2b), but they become inflexible as the frequency increases and

the motion of piles Vr“S gradually deviates from the free-field ground displacement

A
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2o 1 e nNaniann
> ot e s Hm
: 2 1L :“»f,,‘,%,,
;] B, T
3 3, Hal =
@ @ 2 ‘ 20
-4
; 10 " . 10\0@
eyl 40 N
ar ency 50 o c0 &
(a) Free-field ground motion V., ' (b) Pile deflection V,"*°

Fig. 5.2 Free-field ground motion and pile deflection

5.2 Kinematic displacement factors (eff_motion.dat)

The effects of soil-pile group kinematic interaction evaluated at its pile cap are

portrayed in the form of two kinematic displacement factors in sway and rocking
motions

f+s f+s
Te,sway = \<r/—f’ Te,rocking = \t—f
plotted as functions of frequency.

Fig. 5.3 shows the kinematic displacement factors of the 3x3 pile group. This figure
shows that the motion of the pile group is about identical to the free-field ground motion,
and the kinematic interaction effect in a lower frequency range (w < 20) case can be
ignored. As the frequency increases, however, the pile cap gradually starts rocking.

(5.1), (5.2)
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Fig. 5.3 Kinematic displacement factors

5.3 Pile deflection caused by a unit lateral force P, applied to pile cap
(deflec_Px.dat)
Deflection ((V,)r:RO) of the 3x 3 pile group subjected to a unit lateral force applied to

its pile cap is show in Fig. 5.4 for different excitement frequency. The other data files
“deflec_M.dat”, “deflec_Vx.dat” and “deflec_Vz.dat” store pile deflections caused by
an unit moment, M,/ R,=1, unit displacements V, =1 and V,=1, respectively, applied

toitspile cap.

Fig. 5.4 Pile deflection caused by a unit lateral force P,



114 APPENDIX “TLEM” (Ver. 1.2), Thin-Layered-Element Method

5.4 Soil reactions to pile group caused by a unit lateral force P, applied to pile
cap (react_Px.dat)

Sail reactions at laterally-dliced element boundaries to the 3x 3 pile group subjected to
a unit lateral force applied to its pile cap is show in Fig. 5.5 for different excitement
frequency. The other data files “react M.dat”, “react_Vx.dat” and “react Vz.dat”
store reaction forces from the soil surrounding a pile group subjected to an unit moment,
M, / R,=1, unit displacements V, =1 and V,=1, respectively, applied to its pile cap.

real part of

Fig. 5.5 Soil reactionsto 3x 3 pile group subjected to an unit lateral force givento
its pile cap
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5.5 Pile cap stiffness (top_stf.dat)
Fig. 5.6 shows the variations of pile cap stiffnesses for sway motions of 2x2 and 3x3
steel pile groups. The curves for the equivaent single beams agree well with rigorous
solutionsfrom “TLEM” (Ver. 1.1).

40 2% 2piles 405 3% 3piles
) d | oo e
J T rigorous solution LA
3.0 S| o equivalent beam
E E
£ real part =
o 2.0 QS 2.0 25
— / —
% 3
® )
=} ] 9 1 0d
= 1.0 = 1.0
g g
E e E e
- OO “‘ T T T T T T T T 1 - OO 1 T T T T T T T T T 1
0O 2 4 6 8 10 0O 2 4 6 8 10
Frequency (Hz) Frequency (Hz)

Fig. 5.6 Variations of stiffness parameters for sway motions of pile groups

5.6 Pile cap flexibility (top_flx.dat)
Fig. 5.7 shows the variations of pile cap flexibilities for sway, coupling, rocking
motions of the 3x3 steel pile group.

o ~
=] =] =
e ° /\ = T “E_ 10 S
— ™
UPS, ) N eal part @S /\ o 8 real-part
‘; ,/ \/942 eal part a &
T AN T ] -
S, 2 - imaginary| part 4
= ~~ Eof= 8 )
= ol =2 T~ = maginary |part
& — Hmagimary|part <>]§2 \\ F OO
= \ / =" < = ™~
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g' 2447y g Yo 8 <
V-7 1 o N L 4 S
i) --717[] o4 5
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Fig. 5.7 Pilecap flexibilities
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5.7 Soil deformation (space_dsp.dat)

Fig. 5.8 shows the spatial variation of soil displacement caused by a unit lateral force
given to the pile cap of a 3x 3 pile group. Directions of displacement component and
the unit force or displacement given to the pile cap can be controlled by the following
indexesin "SDI SP.dat".
<1> IDR: direction of displacement component (V, (IDR=1), V, (IDR=2)or V, (IDR=3))
<2>KF: direction of applied force or displacement
KF=1: Latera unit force is applied
KF=2: Moment/R, (=1.0) is applied
KF=3: Lateral unit displacement is given keeping rotation zero
KF=4: Unit rotation is given keeping lateral displacement zero
<3> (15): Number of stepwise increases of radial diatance
<4> (F10.7): Initial value of radial distance r/ R,

<5> (F10.7): Increment of radial distanceAr / R,

-5,
tangential diqalacenent v, (10°m)

depth z(m)

(a) radia displacement (ID=1)

(b) tangentia displacement (IDR=2)
Fig. 5.8 Spatial variation of soil displacement (KF=1)
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