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PREFACE 
 
Nonlinear soil-structure interaction is a phenomenon associated with energy influx and 
efflux through a soil-structure interface. The energy accumulated in a structure is given 
as the difference between the energy influx and efflux, and is certainly responsible for 
compound fracture of the structure. Structures in active seismic zones may experience a 
number of earthquakes during their service lives. All events that a structure has 
experienced are responsible for continual accumulation of the damage, and thus, the 
cumulative energy is, if measured, an appropriate index for evaluating the remaining life 
of a structure. Needless to say in this discussion, both behaviors of a structure and its 
subsoil are to be treated with equal rigor in order for the energy flow to be rationally 
estimated. 

Model experiments on a shaking table are quite useful for identification of important 
phenomena and verification of predictive theories regarding dynamic behavior of a 
prototype structure subjected to an earthquake, and sensors densely arranged on a 
structure model may allow us to discuss the compound fracturing of the structure model 
in terms of the energy that is accumulated in it. However, a shaking table is, in general, 
controlled so that it follows closely the input free-field motion, while in reality, a 
structure interacts with its foundation on or in the ground, and responds differently. This 
interaction thus causes the motion of the ground at the structure’s base to deviate from 
the free-field motion. This effect may be partly incorporated by filling up a bin on the 
table with actual prototype soil and by putting a model on it. This method is particularly 
useful when non-linear features of the soil in the vicinity of a structure must be 
considered. But the process of preparing a soil model is rather difficult; and if prepared, 
it still cannot allow for the effect of wave-dissipation into an infinite soil medium 
existing in the field.  
  Shaking tables of many sizes have been used so far. Some are quite large, allowing 
models with dimensions of several meters to be shaken. However, they are not always 
large enough for all structural models of interest to be tested. Within the finite base size 
of a shaking table and within the limit of its dynamic loading capacity, not the whole 
structure but just one part of it, like some devices for vibration reduction, can be tested. 
In this case also, the input motion to the model’s base must be affected by the presence 
of the model. 
  The purpose of this project was to develop a method for controlling a shaking table so 
that the soil-structure or base-structure interaction effect is incorporated. In order for the 
interaction effect to be reflected in a shaking table test, the signal equivalent to the 
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further displacement induced by the interaction is added in real-time to the input ground 
or base motion. This method, therefore, requires a device that can generate the signals 
corresponding to the base-structure interaction motions. To all intents and purposes, the 
expression of base stiffness must be simplified enough for the device to loose no time in 
responding to the input force, and producing the base-structure interaction motion.  
 As is the case of many reports, this report was an outgrowth of different peer-reviewed 
papers published in both domestic and international journals. Chapters in this report are, 
thus, based on these papers. However, they were so arranged that the outline of this 
study, and eventually, the remaining problems would be brought in full relief. 
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suggestions and criticisms have helped me with this project, especially, Dr. Toyoaki 
Nogami, Professor, Cincinnati University, Dr. Takeyasu Suzuki and Mr. Tota 
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INTRODUCTION 
 
 
 
 
 
 
 
 
 
When a structure is subjected to a ground excitation, it interacts with its substructure i.e., 
foundation and soil. In other words, the motion of ground is also altered because of the 
vibration of the structure. Due to the semi-infinite extent of soil, this interaction 
provides a mechanism for energy dissipation, called radiation damping, through soil as 
outwardly propagating waves. For the shaking table tests conducted without taking the 
interaction into account, the input energy is totally consumed by the structure producing 
quite conservative results. On the other hand, tests conducted using physical ground 
model to incorporate associated non-linearity inherit two fold demerits. Firstly, the 
finite dimension of the ground model fails to provide radiation damping and thus 
yielding conservative results. Secondly the weight of the ground model causes an extra 
burden on the performance of the shaking table restricting superstructure models to a 
smaller size. Hence, when the observation of the behavior of a superstructure is the 
main concern, neither of the above methods seems to be satisfactory. 

With a view to incorporate the interaction between soil and structure without using 
any physical ground model, Konagai et al. (1997~1998) introduced a new method for 
shaking table tests. In their method, appropriate soil-structure interaction motions are 
added to free-field ground motions to simulate soil-structure interaction effects. The 
method considers radiation damping which, in general, causes the total damping of a 
soil-structure system to be greater than that of the structure itself. Thus the 
incorporation of soil-structure interaction effects in a shaking table test leads to reducing 
the demands on the capacity of shaking tables. This dynamic interaction is a 
phenomenon associated with the influx and efflux of energy which is generated by the 
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earthquake excitation and transmitted through the soil-structure interface. It is noted that 
the difference between the influx and efflux is exactly the energy stored up within a 
structure, and thus, is closely related to the extent of damage to the structure. If these 
interaction effects are rationally simulated in shaking table tests, one will obtain the 
necessary pieces of information for interpreting the failure processes of prototype 
structures in terms of energy. 

The method was initially developed with the assumption that soil behaves linearly. In 
the present report, the method is extended to take the ‘far field’ soil non-linearity into 
account through an equivalent linear approach. The non-linearity produced in the 
vicinity of foundations, which is usually associated with large strain and separation 
between soil and foundation, has not been considered in this study. In this method the 
dynamic soil parameters are varied in real time by means of a digital signal processor. 
The method, on one hand, captures the non-linear soil behavior of softening and 
re-hardening during the course of an earthquake, and on the other hand, allows testing 
of a bigger superstructure model by obviating the need of a heavy physical ground 
model. 

This report introduces in its first half (Chapters 1~3) simple descriptions of 
foundation stiffness parameters in terms of a limited number of frequency-independent 
parameters: the descriptions allowing soil-structure interaction motions to be simulated 
on a shaking table. The latter half (Chapter 4) then presents a method for simulating 
soil-structure interaction effects in shaking table tests, in addition to some pieces of 
equipment contrived for better control of shaking tables. Simple examples of 
soil-structure interaction simulations using the present method are also given in this 
chapter. 

In the course of this study, the idea of treating a pile group beneath a super-structure 
as a single upright beam has yielded BASPIA (Beam Analogy for Soil-Pile group 
Interaction Analysis), a program allowing soil-pile group interaction analysis to be 
made with less time and effort. BASPIA includes TLEM (Thin-Layered Element 
Method) as a solver that describes a soil stratum as an infinite stratified medium with 
the inclusion of a cylindrical hollow, in which a foundation is fitted. BASPIA with the 
restricted version of TLEM for WINDOWS is a freeware that can be downloaded from 
the following URL: 
     http://norway.iis.u-tokyo.ac.jp/BASPIA.htm 
The manuals of BASPIA and TLEM (Ver. 1.2) are provided in APPENDIX 3. 
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Chapter 1 
 
 
 

SIMULATION OF SOIL -STRUCTURE 
INTERACTION EFFECT ON SHAKING TABLES 

 
 
 
 
 
 
 
 
 
1.1. TWO PRIMARY CAUSES OF SOIL-STRUCTURE INTERACTION 
 

In this study, a soil-structure system is divided into two substructures, the 
superstructure and the unbounded soil extending to infinity; the latter includes an 
embedded foundation as illustrated in Figure 1.1, because a shaking table represents 
exactly the latter substructure of soil. The multi-step method is used to describe two 
primary causes of soil-structure interaction - the inability of the foundation to match the 
free-field deformation, and the effect of the dynamic response of the superstructure on 
the movement of its supporting soil-foundation system. In the lower substructure of soil, 

u f + u s 
p x 

p θ 

u f + u s u R 
R + 

cut in half at the 

base of 

superstructure 
Shaking 

table 

 
Figure 1.1  Two primary causes of soil-structure interaction 
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an earthquake will cause soil displacements, { }u f . The foundation embedded in this 

soil deposit, however, will not follow the free-field deformation pattern. This deviation 
of the displacements from the free-field soil displacements, { }u f , is denoted by { }u s . 

The mass of the super-structure then causes it to respond dynamically, and the forces, 
{ }p , transmitted to the lower substructure of soil and foundation will produce further 

deformation of soil, { }u R  (inertia interaction), that would not occur in a fixed base 

structure. Thus, the displacements of soil, { }u , are eventually expressed by the 

following equation as: 
{ } { } { } { }u u u u= + +f s R  (1.1) 

Consider the case that a foundation has two degrees of freedom in sway and rocking 
(x, θ ) at the base of its super-structure as illustrated in Figure 1.1. The interaction 
forces, { }p ( { }= p px

T
θ ), from the super-structure cause the inertia interaction 

motions, { }u R , in the frequency domain to be: 

u
u

H s H s
H s H s
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where,  

           [ ]H s H s
H s H s

xx x

x

( ) ( )
( ) ( )

θ

θ θθ









 = H       (1.3a) 

is the flexibility (compliance) at the top of the foundation, and 
         s i= ⋅ω                  (1.3b), 

in which i = −1  and ω  is the excitement circular frequency. In the present method, 
a shaking table’s motion is controlled directly following the above-mentioned process of 
soil-structure interaction.  

In the present method, the motion of a shaking table is controlled directly following 
the actual process of soil-structure interaction. Figure 1.2 shows a schematic view of 
the set-up of a shaking table test, in which a superstructure model is placed directly on 
the table without a physical ground model. Soil-structure interaction effects are 
simulated by adding appropriate soil-structure interaction motions to free-field ground 
motions at the shaking table. In the simulation, first, the transducers at the base of the 
foundation pick up the signals of the base forces, px  and pθ  in sway and rocking 
motions, respectively. These two amplified signals are then applied to the circuits Hxx , 
H xθ , Hxθ  and Hθθ  to produce the outputs corresponding to the soil-structure 
interaction motions, ux

R  and u R
θ . The output signals are then added to the signals of 

the base input motions, u ux
f

x
s+  and u uf s

θ θ+ , to produce the signals of foundation 
motions, u u ux

f
x
s

x
R+ +  and u u uf s R

θ θ θ+ + . The method is, thus, based on the premise 
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that u ux
f

x
s+  and u uf s

θ θ+  are known beforehand as the base input motions. The 

signals of the foundation motions are finally translated into the shaking table motions by 
the shaking table controller.  

This method, therefore, requires a device that can generate signals identical to the 
transient motion of its base on a soil medium of infinite extent. To all intents and 
purposes, the expression of soil stiffness, [ ]k  ( [ ]= −H 1 ), must be simplified enough for 
the device to loose no time in responding to the input force { }p , and producing the 

soil-structure interaction motion, { }u R . As will be shown later, the stiffness function 

for a sway motion of a pile-cap, for example, can be closely approximated by a 
simple-damped oscillator with spring, dashpot and mass parameters, K , C  and M  
(Figure 1.2). The parameters K , C  and M  are varied with time to reflect the 

amplifier

structure model

controller

px

Hxx H xθ Hxθ Hθθ

Σ

Σ

pθ

force transducer

ux
R+

uθ
R+

+ux
sux

f

+uθ
suθ

f +uθ
suθ

f

+ux
sux

f

 
 

Figure. 1.2  Present setup in a shaking table test for soil-structure interaction simulation 
 

 
Figure 1.3. Modeling of a pile-group as a simple-damped oscillator 
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non-linear behavior of soil. In order to obtain the appropriate variation of these 
parameters with time a non-linear analysis of ground response is necessary. From the 
non-linear ground response analysis, it is possible to obtain the non-linear stress-strain 
histories at different points of the ground profile for a particular base excitation. The 
non-linear stress-strain histories are then idealized to obtain histories of equivalent 
linear soil parameters like secant shear modulus and damping ratio. Using the 
equivalent linear soil parameters of a particular time, a linear foundation-soil interaction 
analysis is performed to obtain the appropriate values of the parameters of the stiffness 
function at that time. Thus by performing similar analyses repeatedly to cover the total 
duration of the excitation, variations of these parameters with time can be obtained. 
During shaking table tests the parameters of the stiffness function are changed in real 
time according to the derived variations by means of a digital signal processor. The 
steps of the present method are discussed in detail in Chapter 4 (4.4.3, p.61~). 
 
 
1.2 PHYSICAL INTERPRETATION OF DYNAMIC SOIL STIFFNESS 
 
As has been suggested above, a flexibility or stiffness function for the motion of a 
foundation embedded in or resting on the lower substructure of soil can often 
approximated by a simple oscillator with an inclusion of a viscous damper. A simple 
analysis will be sufficient to illustrate a physical interpretation of this viscous damper. 

Observation of wave fronts radiating from a foundation offers important insights into 
soil-structure interaction. This is also a very useful way to examine simple expressions 
of soil-structure interaction.  Konagai et al. (1987) used a special experiment method to 
directly observe the wave front radiating from a foundation subjected to an impulse 
(Figure 1.4). In their method, a model foundation is put on, or embedded in a soft and 
transparent soil model which is made of urethane gel with a thin gelatin plate 
sandwiched upright in its middle. The elastic constants of the gelatin plate are almost 
identical to those of the surrounding urethane gel.  Since the gelatin has an extremely 
high photo-elastic sensitivity compared with the urethane gel, the gelatin plate allows 
the visual observation of the radial propagation of shear waves in the vicinity of the 
foundation. A vertical impulse was applied to a model of a rigid surface disk. Figure 
1.5 shows a snap shot of the wave front radiating outwardly into the homogeneous 
ground model. The hemispherical shape of the wave front suggests that the wave decays 
as it travels away in the radial direction, r. This wave with the velocity c, thus, will 
presumably be approximated by:  
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 u q r f r ctR = ⋅ −( ) ( )          (1.4) 
where, q r( )  describes how the wave attenuates as it travels away. On the soil-disk 
interface ( r r= 0 ) having the contact area, A, shear force, p , is roughly described as: 
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in which µ   is the elastic modulus of soil.  
  The force p  thus turns out to comprise two components proportional to the 

displacement, u R , and the velocity, &u R , of the disk, respectively. Equation (1.5) is thus 

 

urethane 

gelatin plate 

model 

observed fringe 

A suuden discharge of a capacitor through a 

solenoid coil serves as an inpulsive energy source 

capacitor 

 

 
 
Figure. 1.4.  Visualization of wave fronts 

[Konagai et al., 1987] 
 
A jelly-like soft soil model of urethane with 
an upright and flexible gelatin plate 
sandwiched in its interior was prepared in an 
acrylic box. An impulse was then applied to 
a foundation resting on or embedded in the 
soil model. Since photo-elastic sensitivity of 
gelatin, when compared with that of 
urethane, is extremely high, cross sections of 
sharp wave fronts induced by the impulse 
and transmitted through the 3D soil model 
are clearly visualized on the inner plane of 
gelatin through a polariscope arrangement. 

 

 
Figure 1.5. Hemispherical wave front from a rigid disk 

[Konagai et al., 1987, 1998] 
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Figure. 1.6. Semi-infinite soil rod 
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rewritten as: 
   p K u C uR R= ⋅ + ⋅ &       (1.6) 

where,  
  { }K A q r q r r r= −

=
µ ' ( ) / ( )

0
            (1.7a) 

  { }C A q r c r r=
=

µ ( ) /
0
      (1.7b) 

Since q r( )  decreases as r increases, − q r' ( )  in Equation (1.7a) is noted to be a 

positive value, and consequently, both parameters, K  and C  are positive. Equation 
(1.6), thus, implies that the stiffness of the soil-disk system is mechanically identical to 
an assembly of the spring K  and the damper C  arranged in parallel. 

A simple semi-infinite soil rod with a constant cross-section ( q r q r( ) ( )= =0 1, Figure 

1.6), offers further clearer physical insight into the reaction from the soil. Only shear 
deformation is allowed to take place in this rod. The soil stiffness at the end of the rod is 
simply given by: 

  k A
L

= µ         (1.8) 

with L  as the deformed length of the rod. For a static load applied to the end of the 
rod, the entire length of the rod is deformed ( L = ∞ ), and eventually: 

  k K A
L

= = =µ 0          (1.9a) 

Equation (1.9a) is consistent with Equation (1.7a) because − q r' ( )  is noticed to be 0 
for this rod of constant cross-section. When a dynamic load p  causes the rod’s end to 

be driven with the velocity &u R , the entire length of the rod does not move all at once 
within a finite time t . At this particular time t , displacement u R  and the deformed 
rod length L are &u tR  and ct , respectively. The reaction force p is thus given as:  

  p k u A
ct

u t A
c

u CuR R R R= ⋅ = = =µ µ
& & &     (1.9b) 

It is obvious that Equation (1.9b) is consistent with Equation (1.7b) because the 
specific energy does not decrease as the wave travels through the rod of constant 
cross-section calling for q r q r( ) ( )= =0 1.  

  An added mass parameter, M, if necessary, can be attached to the simplified model 
for better approximation of the soil stiffness, leading to a slight modification of 
Equation (1.6) as: 

  p M u K u C uR R R= ⋅ + ⋅ + ⋅&& &     (1.10)  

The soil stiffness is thus written in the frequency domain as: 
  ( )k K M i C= − +ω ω2          (1.11) 

implying that the stiffness is eventually a complex function of circular frequency ω . Its 
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real part is a downward open parabola to the right, whereas its imaginary part increases 
linearly with increasing frequency.  
 
 
1.3 SUMMARY 
 

The above expression for the soil stiffness may be based on oversimplified conditions, 
but gives us an idea that the stiffness for any of lateral, vertical or rotational response 
mode will be approximately described by a limited number of simple 
frequency-independent parameters. It is, however, certainly necessary to have a rational 
numerical tool allowing rigorous stiffness parameters to be examined, and to be 
compared with the simplified expressions. Especially, thorough discussions on piles 
grouped beneath super structures are essential in the course of this study; the discussion 
follows in Chapters 2 and 3. 
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Chapter 2 
 
 
 

SIMPLE EXPRESSION OF THE DYNAMIC 
STIFFNESS OF GROUPED PILES 

 
 
 
 
 
 
 
 
 
2.1 INTRODUCTION  
 

Piles, grouped beneath a superstructure, interact with the surrounding soil during an 
earthquake, and the dynamic pile-soil-pile interaction often affects the motion of the 
superstructure to a considerable extent. Straightforward evaluation of the pile-soil-pile 
interaction, however, is cumbersome especially in dealing with tens or hundreds of piles 
grouped together. Hence a simplified approach for the evaluation of such dynamic 
pile-soil-pile interaction is highly desirable for the purpose of treating the dynamic 
behavior of an entire soil-foundation-structure system. Some research has been carried 
out with the objective of developing such a simplified approach. Attempts include the 
Ring-Pile method [Takemiya, 1986] and Closely-Spaced-Plates model [Ohira and Tazo, 
1985]. In these methods, respectively, piles with the soil caught among them are 
re-grouped into several concentric cylinders (piles arranged in concentric circles) and 
into soil-pile-striped upright plates, allowing close evaluation of interaction effects to be 
made with less time and trouble. This chapter presents a further simplified approach in 
which a group of piles is viewed as a single equivalent upright beam.  

Careful examination of the deflections of grouped piles reveals that most piles are 
indeed flexible in practice in the sense that they do not deform over their entire lengths. 
Instead, pile deflections become negligible below their active lengths. With the active 
lengths provided for different soil-pile systems, it is shown in the latter half of this 
chapter that pile-cap (grouped-piles-head) stiffness can be approximated in terms of the 
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mass, damping and stiffness parameters; the parameters are invariant of frequency and 
are dependent only on the mechanical properties of soil and pile. The method presented 
in this report requires real-time manipulation of soil-structure interaction parameters in 
accordance with the development of non-linear features of soils and piles. The present 
simple expression of pile-cap stiffness, thus proves to be useful despite the availability 
of efficient numerical programs for analyzing pile-soil-pile interaction. 

 
 
2.2 EQUIVALENT SINGLE UPRIGHT BEAM 
 
In discussing the equivalent upright beam, straightforward evaluation of pile-soil-pile 
interaction is first necessary to provide rigorous solutions. Based on the numerical 
scheme presented by Tajimi and Shimomura [Thin-Layered Method, 1976] that allows 
soil-embedded foundation interaction effects to be rigorously evaluated, a numerical 
program “TLEM”(Ver. 1.1) has been developed for soil-pile group interaction analyses 
[Konagai, 1998d]. The Thin-Layered Element Method is a method for describing soil 
strata rather than for foundations. In this method, a soil deposit is treated as an infinite 
stratified medium with the inclusion of a cylindrical hollow in which the foundation is 
fitted. The piles are assumed to be upright Timoshenko or Beronoulli-Euler beams. The 
evaluation of pile-soil-pile interaction effects in this program is based on the 
superposition method that was originally proposed by Poulos [1968, 1971]. In this 
approximation, only two piles are considered in the formulation of a global flexibility 
matrix, and other piles’ effects on these two piles are totally ignored (Figure 2.1). 
Kanya and Kausel [1982] have shown that the superposition scheme gives reasonable 
results not only for static loads but for dynamic loads as well.  
 
 
 

y

x
θ

active pile

passive pile
s d = 2r0

 
Figure 2.1  Active and passive piles 
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In contrast to the above approach, the present single upright beam is a composite of 
pn  piles and the soil caught among them embedded in a horizontally stratified infinite 

soil deposit with material damping of the frequency-independent hysteretic type (Figure 
2.2). Following the TLEM assumption, the soil deposit overlying its rigid bedrock 
should include a cylindrical hollow of radius 0R . The cross-section, 2

0Rπ , of this 
hollow is assumed to be identical to the beam’s cross-section GA  enclosed with the 

broken line circumscribing the outermost piles in the group (Figure 2.2a). The motion 
of the hollow is assumed to be compatible with that of the beam. The soil-pile 
composite together with its exterior soil is divided into nL  horizontal slices as shown 

in Figure 2.2. The following assumptions are adopted to derive the stiffness matrix of 
the equivalent single beam: 
(1)  Pile elements within a horizontal soil slice are all deformed at once keeping their 

intervals constant, and the soil caught among the piles moves in a body with the 
piles. 

(2)  Frictional effects due to bending of piles (external moments on each individual pile 
from soil) are ignored. 

(3)  The top ends of piles are fixed to a rigid cap. 
(4)  All upper or lower ends of the sliced pile elements arranged on the cut-end of a soil 

slice remain on one plane (Note this assumption does not necessarily mean that 
each pile’s cross-section remains in parallel with this plane. See Figure 2.2b). 

 

remain on one plane 

n L 
h j 

w j 
j 

R 0 w 1 

n p piles 

A g 

centroid 

u j 

centroid 

R 0 

 
               (a) soil-grouped piles system            (b) sliced elements 
 

Figure 2.2  Assumptions for evaluation of equivalent single beam 
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With assumptions (1) and (4), there are only two degrees of freedom for each cut-end of 
all slices of the soil-pile composite, namely, sway and rocking motions respectively 
designated as { }u ( { } T

NL
uuu L21= ) and { }w ( { } T

NL
www L21= ) (Figure 

2.2b). The rocking motions are expressed in terms of the anti-symmetric vertical motion 
{ }w  at the outermost edge ( 0Rr = ) of the equivalent beam with respect to the beam’s 
centroid. In sway motions, all pn  piles are equally displaced (assumption (1)), causing 
the bending stiffness, EI , of the equivalent beam to be simply pn  times as large as 

the bending stiffness of an individual pile. Assumptions (3) and (4) imply that axial 
motions of the piles control the overall anti-symmetric rocking motion of the equivalent 
beam just as reinforcements in a concrete beam do. Therefore, another bending stiffness 
parameter, EI G , is introduced to describe the rocking motion of the beam. This 

stiffness parameter EI G  is evaluated following the same procedure as that used for the 
evaluation of bending stiffness of a reinforced concrete beam (See APPENDIX I). 
Lateral external forces { }xp  and moments { }M  are finally described in matrix 
notation in terms of { }u  and { }w  as specified in Equation (A12) in APPENDIX I: 
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 (2.1) 

 
where, [ ]L , [ ]D  and [ ]Q  are assembled global matrices corresponding to the 
individual layer parameters of jh/1  ( jh = thickness of the j-th layer), EIh j /  and 

j
G hREI 2

0/ , respectively, (See Equations (A2), (A4) and (A10) in APPENDIX I 

defining [ ]L , [ ]D  and [ ]Q , respectively).  

“TLEM” has been upgraded for evaluation of the behaviors of an equivalent single 
beam (Ver. 1.2). Figure 2.3 shows pile cap stiffnesses k xx  for sway motions of 2×2 

and 3×3 steel pile groups (Table 2.1) plotted as functions of frequency. The results for 
the equivalent beams are shown as open circles. Each pile group is embedded in the 
same homogeneous soil deposit (Table 2.2) equally divided into 20 slices. Downward 
dips in these plots of k xx  occur at essentially the resonance frequencies of the soil 

stratum for vertical shear wave propagation. As a whole, however, every real part of the 
pile cap stiffnesses decreases slowly as the frequency increases, whereas its imaginary 
part representing the damping of a soil-pile group system shows a general upward trend 
to the right. The curves for the equivalent single beams agree well with rigorous 
solutions from “TLEM” (Ver. 1.1).   
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Table 2.1  Parameters for steel piles 
E p (tf/m2) ρ (t/m3) r0 (m) Thickness (m) Length (m) 
2.1×107 7 0.3 0.0089 20 

 
Table 2.2  Parameters for soil 
ρ (t/m3) Tv (m/s) ν  

1.5 80 0.49 
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Figure 2.3  Variations of stiffness parameters for sway motions of pile groups 

 
Assumption (1) taken in this chapter to derive the stiffness matrix of the 

equivalent-upright beam (Equation (2.1)) implies that the spacing between piles, s, 
should be within a certain limit. To investigate this constraint on the spacing between 
piles, the results of the program “TLEM” (Ver. 1.2) were compared with the rigorous 
results obtained from “TLEM” (Ver. 1.1). Here, hollow cylindrical steel piles (Table 
2.1) embedded in a homogeneous soil with the density ρ  and the shear wave velocity 

Tv  (Table 2.2) were considered. The variations of the ratios between approximate and 
rigorous solutions with respect to normalized frequency Tvs /ω  are shown in Figure 
2.4 for three different values of spacing ( s d/ .= 2 5, 33.3/ =ds  and s d/ .= 50 ).  For 

a wide range of cases examined, “TLEM” (Ver. 1.2) is found to produce insignificant 
error below a certain limit of spacing, s d/ < 3. Below this limit, however, it is noted 
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that the error can yet become significant as the non-dimensional frequency increases 
beyond a certain limit (See thick lines in Figure 2.4 for large number of piles). 
  An earthquake causes the free-field ground motion { } Tff wu M  in which vertical 
displacement vector { }fw  can be ignored in many of the practical cases encountered. 

The piles in this soil deposit, however, will not follow the free-field deformation pattern. 
This deviation of the displacements from the free-field soil displacements is denoted by 
{ } Tss wu M . Equation (2.1) is also used to evaluate effective foundation input motion 

{ } Tsfsf wwuu ++ M . The effects of soil-embedded-foundation kinematic 

interaction are portrayed in the form of two kinematic displacement factors in sway and 
rocking motions 

 f

sf

swaye u
uuT

1

11
,

+
= ,  f
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f
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rockinge u
w
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wwT

1

1

1

11
, ≅

+
=      (2.2a), (2.2b) 

plotted as functions of frequency. In Equation (2.2b), the vertical component of 
free-field ground motion fw1  is ignored. 
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Figure 2.4 Variation of ratios between approximate and rigorous 

solutions with respect to normalized frequency Tvs /ω  
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  Figure 2.5 shows the kinematic displacement factors of a 2×2 PC pile group plotted 
as functions of non-dimensional frequency Tvs /ω  ( s d/ = 2 , See Tables 2.3 and 2.4), 

and they are in good agreement with rigorous solutions by Fan et al. (1982). 
It is again to be remembered that the piles behaving in accordance with assumption 

(1) are completely equal with each other not only in their deformations but also in 
lengthwise distributions of internal force and moment. The dynamic pile-soil-pile 
interaction effects are thus excluded. Even for a static loading, any discussion based on 
the assumption does not reflect the fact that outermost piles sustain heavier loads than 
those on inner piles (static pile-soil-pile interaction). Yet, the present single upright 
beam, as has been shown above, satisfactorily approximates the motions of a pile group 
with a reduced number of parameters. These parameters allow the stiffness parameters 
of a pile cap to be described in a further simplified manner; a discussion of lateral 
translation follows in Section 2.3. 

 
Table 2.3  Parameters for piles 

E Ip p (tf m2) ρ (t/m3) r0 (m) length (m) 

2.4×105 2.0 0.5 15 
 

Table 2.4  Parameters for surface soil deposit 
ρ (t/m3) Tv (m/s) ν  Thickness (m) 

1.75 100 0.40 20 
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Figure 2.5  Kinematic displacement factors of pile groups  
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2.3. ACTIVE PILE LENGTH AND PILE CAP STIFFNESS 
 
2.3.1 Active pile length 
In practice, most laterally loaded piles are ‘flexible’ in the sense that they do not deform 
over their entire length L. Instead, pile deflections become negligible below an active 
length aL  (Figure 2.6). This length depends on how stiff the pile is in comparison 

with the surrounding soil. In engineering practice, Chang’s formula is widely used; in 
this a pile is supported by discrete soil springs dKh , and the characteristic parameter is 

introduced as 4 4/ EIdKh=β  with hK  designating the coefficient of subgrade 

reaction and d the pile diameter. The length given by β/1  is thus directly relevant to 
the active pile length aL . When a soil is treated as an elastic continuum, however, it is 
to be recognized that hK  is not an inherent constant in the soil, but rather dependent 
on d . In addition, the active pile length is more rationally evaluated by replacing dKh  
with the shear modulus of soil µ . Some formulas for rather extreme soil profiles have 
been presented by Randolf(1981), Velez (1983) and Gazetas (1983), and in general, La  
is closely related to the following parameter L0 : 

 L EI
0 4=

µ
           (2.3) 

where, EI  = bending stiffness of the pile, and µ  = shear modulus of soil 
(representative value). The active length La  is thus given as: 
 00 LLa α=             (2.4) 
with the parameter 0α  reflecting different soil profiles. For an pn  pile group, EI  in 
Equation (2.3) will presumably be replaced with EI  ( ppp IEn= ) specified by 

Equation (A5) in APPENDIX I. 

L a 

R 0 

 
Figure 2.6  Active length of pile 
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2.3.2 Pile cap stiffness 
  It is assumed that only the soil above the active pile length, La , is deformed as 

shown in Figure 2.7a. The upper soil is then divided into vertical soil columns. Given 
the prescribed vibration mode )/( aLzψ  that satisfies 1)0( =ψ  and 0)1( =ψ , these 

columns can be replaced with simple-damped oscillators. Reducing the cross-section of 
each soil column, the soil deposit above La  is modeled by an infinite plane supported 
by Winkler-type springs (Figure 2.7b). Lame’s constants λ p , µ p ( µ p = shear 
modulus) and mass density ρ p  of the soil plane and Winkler-type spring constant k p  

for the model are expressed in terms of ψ  as: 

( )∫=
aL

ap dzLzz
0

2)/()( ψλλ , ( )∫=
aL

ap dzLzz
0

2)/()( ψµµ , ( )∫=
aL

ap dzLzz
0

2)/()( ψρρ  

and  ∫ 





=

aL
a

p dz
zd

Lzd
zk

0

2
)/(

)(
ψ

µ        (2.5a)-(2.5d) 

A frequency parameter, ω0 , is introduced herein as: 

 ω
ρ0 =
k p

p

           (2.6) 

For a homogeneous soil, parameters λ p , µ p  and ρ p  in Equations (2.5a)-(2.5c) are 

rewritten as 
 ap L1λαλ = , ap L1µαµ =   and ap L1ραρ =      (2.7a)-(2.7c) 

with  ( )∫=
1

0

2
11 )( ζζψα d . 

Even for inhomogeneous soils too, similar expressions may be derived with λ , µ , and 
ρ  interpreted as representative values of λ ( )z , µ( )z  and ρ( )z , and the parameter 

1α  portraying different soil profiles. 
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(a) Vertically sliced soil above La         (b) Equivalent model 

Figure 2.7  Soil deformation 
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  The expression of soil stiffness, ks , for the lateral motion of a massless body 

embedded in the soil plane in Figure 2.7b is completely identical to that given in Novak 
et al. [1978] regardless of the presence of Winkler-type springs pk , i.e.:   

    
)()()()()()(

)()()()()()(4

0000000001001000

010000001001012
0 aKbKabaKbKaaKbKb

aKbKbaKbKaaKbKak ps ++
++

= πµ       (2.8) 

where K0  and K1  are modified Bessel functions of the first and second order, 
respectively. Both a0  and b0  are normalized circular frequencies. As shown in 

APPENDIX II, the only difference from Novak’s solution, owing to the presence of 
Winkler-type springs k p  appears as an inclusion of the frequency parameter ω0  in 

a0  and b0  as: 

 a R
vT

0
0 0= ω η ,  b R

v L
0

0 0= ω η   with η ω
ω

= −






1

0

2

     (2.9a)-(2.9c) 

in which ω  is the circular frequency, and  
 ppTp

v ρµ /=  (= transverse wave velocity in the plane)    (2.9d) 

 pppLp
v ρµλ /)2( +=   (= longitudinal wave velocity in the plane)   (2.9e). 

Since 0a  and 0b  are respectively functions of 
pTv  and 

pLv , Equation (2.8) is in turn 

a function of the Poisson’s ratio ν . The expression of Equation (2.8) for a Poisson’s 
ratio equal to 0.5 is obtained by taking a limit as 5.0→ν  in Equation (2.8), i.e.: 
 k S ms s= +2 2* ω              (2.10) 
where ms ( = ρ πp R0

2 ) is the soil mass of the same volume as the cylindrical hollow in 

the soil plane, and 

  S a K a
K a

* ( )
( )

= 2 0 1 0

0 0

πµ          (2.11) 

 
 

Table 2.5  Values of ξ k  and ξm  
Poisson’s ratio, 

ν  
ξ k  ξm  

0.50 2.000 1.0000 
0.47 1.831 0.5336 
0.45 1.741 0.3740 
0.43 1.667 0.2628 
0.40 1.580 0.1428 
0.35 1.476 0.0352 
0.25 1.351 0 
0.20 1.311 0 
0.10 1.252 0 
0.00 1.213 0 
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It is found that the stiffness ks  for any Poisson’s ratio other than 0.5 can be 

approximately expressed in the same form as Equation (2.10) but with a small 
modification [Nogami and Konagai, 1986], i.e.: 
  k S ms k m s= ⋅ + ⋅ξ ν ξ ν ω( ) ( )* 2         (12) 
where, ξ νk ( )  and ξ νm ( )  are functions dependent only on Poisson’s ratio ν . The 
values ξ νk ( )  and ξ νm ( )  are given in Table 2.5. 

  Konagai et al. [1992, 1998b] have shown that assuming plane stress condition over 
the entire extent of the soil plane allows ks  to approximate closely the rigorous 

solution of the soil stiffness, and thus, Poisson’s ratio ν  in Equation (2.12) must be 
replaced with ν *  for a plane-stress medium, which is expressed as: 

 
)(2 *

*
*

pp

p

µλ
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=         (2.13) 

where, λ
λ µ

λ µp
p p

p p

* =
+

2
         (2.14) 

It is noted that ν *  ranges from 0 to 1/3, and thus, ξ νm ( )*  in Equation (2.12) is 

completely equal to zero. Equation (2.12) is then rewritten as; 
  k Ss k= ⋅ξ ν( )* *          (2.15) 
The function )(/)( 0001 aKaK  is approximated by 0/4.01 a+ , when the absolute value 
of 0a  is larger than 0.01 [Konagai and Nogami, 1998a]. This simplification leads to: 

 k a K a
K a

a as p k p k= ≅ ⋅ +2 2 1 0 40 1 0

0 0
0 0πµ ξ ν πµ ξ ν( ) ( )

( )
( ) ( . / )* *     (2.16) 

Two limiting cases of ω → 0  and ω → ∞  are addressed herein. For the static case 
( ω ≅ 0 ), η  of Equation (2.9c) approaches 1. Replacing 0ω  and 

pTv  in Equation 

(2.9a) with those specified in Equations (2.6) and (2.9d), respectively, non-dimensional 
frequency a0  in the static case is expressed as: 

 00 R
k

a
p

p

µ
=          (2.17) 

Substituting into Equation (2.17) Equations (2.5d) and (2.5b) which specify pk  and 

pµ , respectively, Equation (2.17) is rewritten as: 
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Equation (2.16) is thus simply written as: 
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For the dynamic case (ω → ∞ ), non-dimensional frequency a0  converges on: 

 ia
v
Ria

pT

== 0
0

ω
          (2.20) 

Equation (2.16) is thus approximated by: 
 ( )11 8.02 απξαπξµ kkas aiLk +⋅⋅≅        (2.21) 

From Equations (2.19) and (2.21), soil stiffness will presumably be approximated as: 
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Even without the soil above the active pile length, the pile group exhibits its own 
stiffness, gk  (Figure 2.7b), which is described as: 
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where,  ∫ 
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Both sk  and gk  sustain the mass gm  of the embedded pile group with soil caught 
among the piles. This mass gm  is approximated by: 
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=≅ ∫        (2.24) 

Therefore the overall stiffness k xx  of the pile cap for sway motion is given as: 
 k k k mxx s g g= + − ω2          (2.25) 

From Equations (2.22), (2.23) and (2.24), Equation (2.25) is rewritten as: 
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Substituting Equation (2.3) into Equation (2.26), one obtains: 
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It is now obvious that k xx  in Equation (2.27) has the following simple form with 
frequency-independent stiffness k0 , and damping and mass parameters c0  and m0  

respectively: 
 2

000 amacikk xx ⋅−⋅⋅+≅          (2.28) 

where, 
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with  21 2 απξ kc = , 2
0

3
102 8.0
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α

ααπξ += kc , 103 2 ααπξ kc =  and 104 απα=c . 

          (2.30a)-(2.30d) 
The above equations show some important features of the pile cap stiffness. Among the 
parameters specified in the above equations, 1c , 2c , 3c  and 4c  are dependent on the 
shape function ( )ζψ , which may not differ drastically in different soil-pile systems as 
long as piles exhibit a flexible nature, and 00 / Lk µ  alone includes a term proportional 
to 00 / LR . Equation (2.28) was derived with the intention of showing what could be the 
most important key parameters that determine xxk . The assumption taken to derive the 

equation is good enough for this purpose, but certainly is an oversimplification of reality. 
Since soils below active pile lengths are not allowed to deform at all, the assumption is 
liable to lead to overestimation of the stiffness parameter 0k  and underestimation of 
the damping parameter 0c . Therefore, parameters 1c , 2c , 3c  and 4c  were obtained 

not directly from Equations (2.30a)-(2.30d), but in such a way that the overall error 
would be minimized for the variety of soils and pile parameters examined. The 
parameters that have been considered are: 1) pile parameters such as group-pile stiffness, 
EI ( ppp IEn= ), and active pile length ratio, L L0 / ; and 2) soil parameters including 

shear modulus µ  and material damping D . In this discussion, only a homogeneous 

soil profile with a square arrangement of piles is considered. The best fit of the values 
from Equation (2.28) to rigorous solutions of k xx  was obtained by setting c1 , c2, c3  
and c4  at 2π , π / 2 , 2π  and π / 4 , respectively. Some representative cases are 

shown in Figures 2.8a-2.8f.  
The present simple expression of k xx  (Equation (2.28)) allows the effects of overall 

site non-linearity to be reflected by simply replacing the shear modulus of the intact soil, 
µ , with the complex modulus, µ ' ( )1 + iD ; this describes equivalent-linear features of 

the soil experiencing dynamic loading, and is obtained from shear-modulus-reduction 
and damping ratio curves of the soil. This manipulation, however, causes the stiffness 
and damping parameters k0  and c0  in Equations (2.29a) and (2.29b) to be slightly 

dependent on frequency as:  
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When the effect of D cannot be ignored in Equations (2.31a) and (2.31b), appropriate 
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values of k0  and c0  must be determined taking into account the most probable 

predominant frequency a in the soil-structure interaction reality. Figures 2.8a-2.8b 
show that introducing the complex shear modulus of soil, the effect of material damping 
has properly been taken into account. 

The downward dips in these non-dimensional plots of rigorous variations of k xx  vs. 

frequency occur at essentially the resonance frequencies of the soil stratum for vertical 
shear wave propagation. Thus the results from ‘TLEM’ analyses with a perfectly rigid 
base laid under the soil stratum correspond to cases where this effect is most 
pronounced. It is therefore more likely that the solutions adhere along the ridges of 
these plots as the bases become more flexible. As can be seen from Figure 2.8c, 
Equation (2.28) underestimates slightly the real part of stiffness, and overestimates its 
imaginary part for lower values of shear modulus of soil. 
 From the study of a wide range of pile parameters (viz. number of piles, diameter of 
individual piles and length of piles), it was found that Equation (2.28) is valid 
irrespective of pile and soil parameters as long as the active-pile-length ratio, L L0 / , is 

within a certain limit. Beyond this limit, the behavior of piles deviates from the 
‘flexible’ nature. Figures 2.8d-2.8f show this trend of the deviation of Equation (2.28) 
from the results of “TLEM” (Ver. 1.2) as the ratio L L0 /  increases. In these figures, 
L L0 /  are changed by arbitrarily changing the number of piles and/or diameter of 
individual piles. These figures show that the allowable limit of L L0 /  is 0.3 or less. 

  A similar expression must also be derived for the dynamic stiffness of grouped piles 
in rocking motion and for the coupled stiffness between lateral sway and rocking 
motions.  In this extension also, active pile length, if rationally estimated, would allow 
the pile-cap stiffness to be approximately described in a similar manner. Further detailed 
study on this point will be addressed in a later publication. 
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2.4. SUMMARY 
 
Piles grouped beneath a superstructure can be viewed as a single equivalent upright 
beam when the piles are closely spaced. The stiffness matrix presented herein (Equation 
(2.1)) yields close approximations of both dynamic pile-cap stiffness and kinematic 
displacement factors. This idealization of grouped piles as a single equivalent upright 
beam and the concept of the active pile length have facilitated the derivation of a simple 
expression of pile-cap stiffness in terms of frequency-independent mass, damping and 
stiffness parameters (Equations (2.29a)-(2.29c)). This expression is valid irrespective of 
pile and soil parameters as long as the pile group exhibits a “flexible” nature with its 
active-pile-length ratio, L L0 / , kept less than 0.3. The present simple expression of 

pile-cap stiffness also allows the effects of overall site non-linearity to be reflected by 
simply replacing the shear modulus of the intact soil, µ , with the complex modulus, 
µ' ( )1+ iD , which describes equivalent-linear features of the soil experiencing the 

seismic motion. 
 A similar expression must also be derived for the dynamic stiffness of grouped piles in 
rocking motion and for the coupled stiffness between lateral sway and rocking motions. 
Moreover, there is further scope to extend this study for inhomogeneous soil-profile and 
the local non-linearity of soil that develops in the vicinity of piles. In these extensions 
also, active pile length, if rationally estimated, would allow pile-cap stiffness to be 
approximately described in a similar manner. This will be discussed in future 
publications.  
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Chapter 3 
 
 
 

SIMPLE EXPRESSION OF THE DYNAMIC 
FLEXIBILITY OF RIGID 

EMBEDDEDFOUNDATIONS 
 

 
 
 
 
 
 
 
 
3.1 INTRODUCTION 
 
Flexible piles have been the focus of the previous discussion in Chapter 2. The 
idealization of grouped piles as a single equivalent upright beam and the concept of the 
active pile length have facilitated the derivation of a simple expression of the pile-cap 
stiffness in terms of frequency-independent mass, damping and stiffness parameters. 
This simple approximation, however, is not appropriate for a rigid embedded body 
subjected to dynamic loading. Moreover, the rigidity of the foundation prevents it from 
following closely horizontal component of the free-field deformation pattern { }fu .  

It is shown in this chapter that salient features of soil - stiff embedded foundation 
interaction are often insensitive to the detailed variations of soil profiles, and this fact 
enables us to apply the present method for soil-structure interaction simulation to real 
complex conditions. Nonlinear effects of soil will presumably be taken into account by 
changing the frequency-independent mass, spring and damping parameters with change 
in the soil shear modulus. Therefore, it is worthwhile to examine if rather secondary 
factors can be eliminated so that the simulations have a good balance between 
mathematical rigor and uncertainty in the complex environment. 
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3.2 KINEMATIC INTERACTION  
 
A foundation of radius 0R  is assumed to be embedded in a soil deposit underlain by a 

semi-infinite bed-rock as shown in Figure 3.1. The inability of the rigid embedded 
foundation to conform to the deformation of soil thus causes the motion of the 
soil-structure interface to deviate by { }su  from the free-field motion { }fu  (kinematic 

interaction). The foundation input motion must thus be modified to incorporate the 
effect of the kinematic interaction. The foundation-input motion { } { }sf uu +  for the 

system illustrated in Figure 3.1 is estimated rigorously by using the thin layered element 
method (Tajimi and Shimomura, 1976). Figure 3.2 shows the variation of 
( ) x

f
x

s
x

f uuu /+ , i.e., the foundation-input motion at the ground surface, which is 

normalized by the free-field motion x
fu . The ratio is nearly a real function of 

frequency, and decreases gradually as the frequency increases beyond the first 
fundamental natural circular frequency 0ω  of the soil deposit. This implies that the 
contribution of the fundamental vibration mode 1ψ  of the soil deposit to the 

foundation-input motion is predominant, because the rigidity of the embedded 
foundation keeps it from following the motion of higher modes. Therefore, it might be 
acceptable to approximate the foundation input motion excluding the higher modes of 
vibration. To examine this point, the free-field motion is calculated by taking into 
account only the first mode of vibration 1ψ , and compared with the rigorous solution. 
Figure 3.3 shows the variation of the approximate solution of ( ) x

f
estx

f uu /mod1, . The 

similarity is immediately apparent when Figure 3.3 is compared with Figure 3.2, and 
thus, provides a firm basis for this approximation. 

 

0
LR

ϕ
0

z

 
Figure . 3.1  Foundation embedded in thin-layered soil deposit 
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3.3 SIDE SOIL STIFFNESS FOR ROCKING MOTION 
 

When the embedded foundation experiences an intense earthquake motion, the 
surface soil deposit exhibits more pronounced nonlinear features than the bed-rock. As a 
result, soil shear moduli at different depths in the surface layer vary with time. On the 
contrary, densities and Poisson’s ratios of soils are very little or negligibly influenced by 
the soil nonlinearity. Thus the rocking stiffness of an embedded foundation reflects the 
overall change in soil shear moduli throughout the depth. 
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The following linear variation of shear wave velocity with respect to the depth z is 
assumed with specific values of shear wave velocities at the top and bottom of the 
surface soil deposit: 

 ( ) )0()0()()( TTTT v
L
zvLvzv +⋅−=      (3.1) 

where, L is the thickness of the surface soil deposit. The shear wave velocities are 
modified to fluctuate randomly around the values given by Equation (3.1) so that the 
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Figure 3.4  Soil profiles (The soil deposit is divided into 10 sub-layers) 
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Figure 3.5  Impedance functions for rocking motion of an embedded body 
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ratio of the deviation )(zvT∆  to )(zvT  eventually exhibits the Gaussian distribution 

with the standard deviation of 20%.  Finally, the obtained shear wave velocities at 
various depths are multiplied by a uniform factor throughout the depth, to keep the 
fundamental resonance frequency equal to that for the original simple soil profile 
described by Equation (3.1). Following this procedure, four different soil profiles are 
prepared for each of two different cases of 1)(/)0( =Lvv TT  and 2)(/)0( =Lvv TT  as 

shown in Figures 7a and 7b. Impedance functions for the rocking mode of the 
embedded foundation were computed for these soil profiles by using Thin-Layered 
Element Method. 
  Figures 3.5a and 3.5b show the computed rocking stiffnesses. It is noted that the 
change in the soil profile to the extent shown in Figures 3.4a and 3.4b causes no serious 
change in the stiffness of the foundation. These examples suggest that the rocking 
stiffness of a stiff embedded foundation is strongly governed by the fundamental natural 
frequency of the surrounding soil deposit, and rather secondary detailed features can be 
eliminated. It is therefore worth examining the contribution of the first fundamental 
vibration mode of the soil deposit to the impedance function of the foundation.  
  The present simulation approach utilizes simple expressions for soil responses at the 
side of the embedded foundation, which are obtained neglecting the vertical soil 
response for the horizontal and rocking responses of the foundation.  This assumption 
was first used by Tajimi (1969).  Modified Tajimi’s solution shows that the restoring 
moment rM  for the harmonic rotation tie ωϕ 0  is expressed in the form of: 

 ti
sideRr ekM ωϕ 0,=            (3.2) 

where,  

 

)()()()()()(
)()()()()()(4

8

001010

010111

..5,3,1
4

2

0

3
0

,

mmmmmmmmmm

mmmmmmmm
m

m

mm
sideR

bKaKbaaKbKbbKaKa
bKaKbaKbKaaKbK

mr
Lrk

++
++⋅

=Ω

Ω
= ∑

∞

=

ζ
π
µ

      

 
L
vf

v
rb

v
ra T

L
mm

T
mm 2

2,, 11*
0101 ππωωζωζ ====                            

 
2

1

2 )1( 





−+=

ω
ωζ iDmm     (3.3a)-(3.3f) 

where mK  is modified Bessel function of order m. Though the original Tajimi’s 

solution is based on the assumption of vanishing vertical displacement, the modified 
longitudinal wave velocity *Lv  is used here to consider the stress free condition on the 

ground surface  (Konagai and Maehara, 1992).  The contribution of the first mode is 
isolated from the other modes in this expression.  The impedances computed in this 
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manner is compared in Figure 3.6 to those computed with up to 10 modes.   They are 
also computed by the thin-layered element method which does not ignore the vertical 
soil response and is considered to be rigorous compared with Tajimi’s method.  It is 
clear in this figure that the exclusion of higher vibration modes in Tajimi’s method 
affects little the dynamic stiffness, and the good agreement between the rigorous and 
approximate solutions proves the predominant contribution of the fundamental vibration 
mode. 

All the examples mentioned above shows that salient features of the impedance 
function of a stiff embedded foundation are insensitive to the detailed variations of soil 

 

0 1 2 3 4 5 
0 

100 

200 

300 

400 

r 
0 
/ Ｌ=0.25 

v 
T 
(0)/ v 

T 
( Ｌ )=1.0 

Poisson's ratio = 0.4375 
D =0.02 

 contribution of the first mode 
 Tajimi's solution (up to 10th mode) 
 rigorous solution (thin layered method) 

K
 R / µ

 h   r 
0 3 

normalized frequency  ω / ω 
h 1 

  

 
Figure 3.6  Contribution of the first vibration mode of surrounding soil 

                to impedance function 
 

 
 

(a)  soil deposit surrounding an embedded body        (b) soil plane overlying Winkler 
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Figure 3.7  Vertically sliced soil deposit 
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profiles and, thus, this allows us to describe the impedance function by only a limited 
number of parameters.  

The superior contribution of the fundamental vibration mode 1ψ  to soil-embedded 

rigid body interaction greatly simplifies the soil-embedded body interaction analysis. 
When the surface soil deposit is divided into vertical soil columns as shown in Figure 
3.7a, these columns, given a prescribed vibration mode of 1ψ , can be replaced with 

simple-damped oscillators. Reducing the size of each soil column, the surface layer is 
modeled by a plane of infinite extent supported by Winkler-type springs (Figure 3.7b). 
The similarity is immediately apparent when Figure 3.7 is compared with Figure 2.7 in 
Chapter 2, and it is now obvious that the rocking stiffness, RK , of the embedded 
foundation has the same form as sk  in Equation (2.15) (Chapter 2), with 2L  added to 

its right-hand side as: 
  **2 )( SLK kR ⋅⋅= νξ          (3.4) 

Further extended discussion on the stiffness could be made in the similar manner as that 
in Chapter 2. In Chapter 2, downward dips in the plots of rigorous variations of xxk  vs. 
frequency were ignored in discussing simplified expression of xxk  in terms of the 

frequency-independent mass, spring and damping parameters. Figures 3.5 and 3.6, 
however, show that these dips are rather clearer and more significant than those 
appeared in xxk  of pile groups. Substituting Equations (3.7a) and (3.7c) in Equation 
(3.4) yields both the real and the imaginary parts of RK  as 
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Noting that ( ) )/(2// 0000 LRvRa T ⋅== πω  at 0=ω , the real part of RK  drops from 
( ) ( )LR /2/4.0 0⋅+ π  down to 0.4 as ω  approaches 0ω . The drop thus depends on the 

aspect ratio LR /0  of the foundation. For thick and short foundation, this drop is 

remarkable and cannot be ignored.  
The stiffness *S  in Equation (3.4) or its inverse, namely, a flexibility function 
*H ( */1 S= ) is the most frequently encountered expression in soil-structure interaction 

analyses. The flexibility function *H  is found to be closely approximated by the 
following form as: 
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Figure 3.8  Flexibility functions )(* ωH  for different height-radius ratios 

 
Figures 3.8a-3.8d show flexibility functions for the rocking motion of an embedded 
rigid cylinder for different height-radius ratios ( 0/ RL ) 1, 2, 4 and 8, respectively. 

Within this range of radius-height ratio, the expression agrees well with the rigorous 
solution. Inverse Fourier transformation of *H  yields the impulse response function 

)(* th  as:  
  )()()(* thAthAth ccee +=         (3.8) 

where,            t
e

eeh α−= ,  teh t
c

c
0cosωα−=      (3.9a), (3.9b) 

Equation (3.8) implies that the impulse response function )(* th  is approximated by 

adding up exponential and exponentially decaying cosine functions. 
 
3.4 SIMPLE EXPRESSION OF STIFFNESS  
 

Needless to say, use of the simple models that have been discussed so far leads to 
some loss of precision, to be sure, however, reviewing these expressions, it is found that 
the impulse responses of these models are closely approximated by summing up 
exponential and/or exponentially decaying sine and cosine functions of time t, )(, th me , 

)(, th mc  and )(, th ms , namely, 
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where, meA , , mcA ,  and msA ,  are unknown constants and 
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Fourier transforms of h te m, ( ) , h tc m, ( )  and h ts m, ( )  in Equation (3.4) are: 
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  and  F( ))(, th ms = 2
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where, ωis =  and F denotes Fourier transformation. 
  It is noted here that the flexibility function of an assembly of three springs, 1ak , 2ak , 

bk , and two dashpots, 1ac , 2ac , shown in Figure. 3.94) is expressed in the following 

form as: 
 

)()}({
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)(
221121221
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1212

ajabaaaabaaaaaa

aaaa

kkkkkscckckckscc
kkscc

sH
+++++++

+++
=    (3.13) 

which has the same form as any of Equations (3.12a), (3.12b) and (3.12c). Setting 
21 aa cc  in Equation (3.13) at a minus constant value -1, for example, and equating all the 

terms in Equation (3.13) with those of Equation (3.12a), five model parameters, 1ak , 

2ak , bk , 1ac  and 2ac  are given as real values as: 
  meak ,1 618.0 α=        (3.14a) 
  meak ,2 618.1 α−=        (3.14b) 
  0=bk         (3.14c) 

k c 

k a2,j c a2,j 
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p a p b 
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Figure 3.9  Mechanical model for basic response functions 
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  618.01 =ac        (3.14d) 

  ca2 1618= − .        (3.14e) 
It is noted here that the mechanical model with the above five parameters (Equations 
(3.14a)-(3.14e)) is identical to a simple Kelvin-Voigt model with a single spring, -α e m, , 

and a single dashpot, -1, arranged in parallel. Similarly, the parameters for Equation 
(3.12b) are obtained as: 

  ka c m c m1 0 618= +( . ), ,α ω          (3.15a) 
  ka c m c m2 1618= − +( . ), ,α ω          (3.15b) 
  kb c m= −2 236. ,ω           (3.15c) 

  ca1 0 618= .           (3.15d) 
  ca2 1618= − .           (3.15e) 

and those for Equation (3.12c) are: 

  ka s m
s m

1 2
= −α

ω
,

,           (3.16a) 

  ka s m
s m

2 2
= − −α

ω
,

,          (3.16b) 

  kb s m= 125. ,ω           (3.16c) 

  ca1 1=            (3.16d) 
  ca2 1= −           (3.16e) 

Needless to say, springs and dashpots should be positive in actuality. If these parameters 
were free from this restriction however, it would surely be possible for Equation (3.13) 
to be completely identical to any of Equations (3.12a), (3.12b) and (3.12c), and this 
assumption is possible in both analog circuits and digital signal processors. 

The side soil stiffness, RK  (Equation (3.4)), for the rocking motion of an embedded 

rigid body is thus approximated by a simple mechanical model illustrated in Figure 
3.10. 

Figureure 3.10  Simple expression of side soil stiffness 
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3.5 BASE SOIL STIFFNESS 
 
Differing from flexible pile foundations, the contribution of a base reaction to the 
stiffness of an embedded rigid body is not always small enough to be ignored. Unit 
impulse functions of soil/rock at the base of rigid embedded foundation are assumed to 
be those for a half space medium. According to the approach presented by Meek and 
Wolf (1992a-1993b), the soil is idealized as a truncated semi-infinite elastic cone with 
its own apex height (Figure 3.11) in order to develop unit-impulse functions for a 
surface foundation. The apex ratio z r0 0/ , or the opening angle of the cone, is 

determined for each degree of freedom such that the static stiffness coefficient of the 
disk on the cone is equal to that on the semi-infinite soil half-space, although the wave 
propagating through the cone dominates the behavior in the high frequency range. For a 
translational cone, the unit-impulse response function h tx ( )  is thus obtained as: 

 h t K
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e t

t
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z
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with K v r zx static T, /= ⋅ρ π2
0

2
0 , where vT  is the shear wave velocity. The unit-impulse 

response function h tθ ( )  for a rotational response is similarly obtained as: 
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where K v I zstatic Lθ ρ, /= 3 2
0 0  with I r0 0

4 4= π / , and vL
*  is the modified longitudinal 

wave velocity (Meek and Wolf, 1992a-1993b). 
  The above expressions for unit-impulse functions are also found to be linear 
combinations of exponential and/or exponentially decaying sine and cosine functions 
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Figure 3.11  Cones for various degrees of freedom (Meek and Wolf, 1992a-1993b) 
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3.4 SUMMARY 
 

Salient interaction features are often insensitive to the detailed variations of soil 
profiles.  As for an embedded stiff foundation, its impedance function is strongly 
governed by the fundamental vibration mode of the surrounding soil deposit and the 
contributions by other modes can be ignored. This fact allows us to describe the 
impedance function (stiffness) by only a limited number of parameters. Such a small 
number of parameters are easily manageable even in commercially-available personal 
computers. This simplification thus certainly enhances the practicality of the present 
simulation approach and also will enable us to use the present simulation approach in 
the nonlinear soil environment. 
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Chapter 4 
 
 
 

REAL TIME CONTROL OF SHAKING TABLE FOR 
SOIL-STRUCTURE INTERACTION SIMULATION 

 
 
 
 
 
 
 
 
 
4.1. INTRODUCTION  
 

Simple descriptions of foundation stiffness parameters have been discussed in the 
first half of this report (Chapters 1-3). The stiffness parameters are eventually 
approximated by a limited number of frequency-independent parameters. All these 
expressions may be such an oversimplification of reality that they cannot cover all cases 
of soil-structure interaction reality. They, however, allow the real-time production of the 
soil-structure interaction motions on a shaking table.  

A faithful reproduction of input motions on a shaking table, however, is not easily 
done. Recent advances in robust and adaptive control theories have certainly enhanced 
the controllability of shaking tables to a great extent (Horiuchi et al., 1995, Stoten et al., 
1998), and yet, the motions of a table often have to be adjusted, through iterative trials, 
to the intended base motions by modifying the input time histories; the iterative trials 
are not allowed to be done in the present approach. Generally, the larger a table is, the 
more difficult it is for the table to be controlled at will, and there often remains a time 
delay t∆  between the produced motion and the input signal. This chapter shows in its 
first half a practical method for canceling the time-delay effects in shaking table tests. 
The latter part then describes simple examples of soil-structure interaction simulations. 
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4.2 CANCELLATION OF TIME DELAY EFFECT  
 
It is noted that the system illustrated in Figure 1.1 (Chapter 1) is realized on condition 
that a shaking table loses no time in producing faithfully its input motion.  The motion 
produced by the shaking table, however, is not exactly identical to the intended time 
history because the ratio of output-to-input amplitude of the shaking table system does 
not remain the same over the desired frequency range. The performance of the system’s 
transfer function is also affected by the presence of models on the shaking table; this 
fact may cause the motion of the table to further deviate from the intended time history. 
A controller with the transfer function T  normally performs like a low pass filter, and 
experiments on the table are conducted below its cut-off frequency. Below this 
frequency yet, there remains a time delay t∆  between the produced motion and the 
input signal. The effect of the time delay, described in the frequency domain as 

tieT ∆−≅ ω , could be canceled by multiplying the flexibility function H  by 1−T . 
Assuming that the performance of a soil-foundation system is approximated by that of a 
simple-damped oscillator with spring, damping and mass parameters, K, C and M 
(Figure 4.1), the flexibility function xxH  is expressed as: 

CiMK
H xx ωω +−

= 2

1
     (4.1) 

Thus, the cancellation of the time-delay effects is made by 

CiMK
eTH

ti

xx ωω

ω

+−
≅

∆
−

2
1      (4.2) 

For smaller values of t∆ω , Equation (4.2) is rewritten as: 

)()(
1

2
1

CCiMMK
TH xx ∆−+∆−−

≅−

ωω
    (4.3) 

where, tCM ∆⋅=∆  and tKC ∆⋅=∆     (4.4a) and (4.4d) 
 

 
Figure 4.1 Modeling of a pile-group as a simple-damped oscillator 
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Equation (4.4b) shows that the equivalent mass and the viscous damping coefficient are 
reduced by tC∆  and tK ∆⋅ , respectively. The reduced mass MM ∆−  and the damping 
coefficient CC ∆−  must be positive, calling for: 
   14 2

0

2 <∆=∆
t

tt
M
M cπ  and 1<∆=∆

ct
t

C
C   (4.5a) and (4.5b) 

with KCtc /=  and KMt /20 π=      (4.6a) and (4.6b) 

The above conditions (Equations (4.5a) and (4.5b)) are usually satisfied in reality for 
many cases of soil-structure interaction, because radiation of waves from a foundation 
leads the motion of the structure to be noticeably damped. 

It is, however, necessary for the time delay to be minimized when Equations (4.6a) 
and (4.6b) are not satisfied. One possible measure for reducing the time delay is to 
increase the feedback gain of a servo-amplifier of the shaking table (Figure 4.2). In 
Figure 4.2, uin  and uout  are the input signal and the signal of the motion produced by 

the shaking table, respectively. The deviation of the produced motion from the input 
signal, u uout in− , is multiplied by a negative factor − β , and is added to the input 
signal uin . The following relationship between uin  and uout  is then satisfied with the 
original transfer function of the controller itself ( 0=β ) denoted by G : 

  ))(( outininout uuuGu −+= β      (4.7) 

From Equation (4.7), the overall transfer function T  is described as: 
        T

u
u

G G
G

out

in

= =
+
+

β
β1

         (4.8) 

It is noted in Equation (4.8) that T  comes closer to 1 as the feedback gain, β , 

increases. The servo-amplifier shown in Figure 4.2 was built in a one-dimensional 
shaking table system to check its performance. Figure 4.3 shows that a servo-amplifier 
with a larger value of β  offers more significant improvement in expanding the 

frequency range in which the ratio of output-to-input amplitude remains almost constant 
with little phase-shift. The increase of β , however, leads to a decrease in the margin for 

unstable clattering of the table that is caused by the noise echoing through the closed 
circuit of the servo-amplifier. The authors are trying out some other attempts in which a 
Robust-Adaptive way of control is utilized. They will be addressed in later publications. 
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Figure 4.2 Servo-amplifier 
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Figure 4.3.  Effect of feed-back gain on shaking-table transfer function 
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4.3 EXPERIMENTS 
 
In order to provide a proper perspective on the usefulness of the present method, three 
simple examples of simulation of soil-structure interaction effects are introduced herein; 
(4.3.1) linear soil - linear structure, (4.3.2) linear soil - nonlinear structure and (4.3.3) 
nonlinear soil - nonlinear structure interactions. In the third example (4.3.3), the ‘far 
field’ soil non-linearity is taken into account through an equivalent linear approach. The 
non-linearity produced in the vicinity of foundations, which is usually associated with 
large strain and separation between soil and foundation, has not been considered in this 
example yet. It is, however, shown herein that a digital signal processor allows real time 
manipulation of the dynamic soil parameters to be made. The method on one hand 
captures the non-linear soil behavior of softening and re-hardening during the course of 
an earthquake, and on the other hand, allows testing of a bigger superstructure model by 
obviating the need of a heavy physical ground model. 
 
4.3.1 Flexible upright cantilever 
   Eight steel plates (2000 mm×300mm×1 mm) were fastened together with rivets 
arranged in a grid to form a simple cantilever. The cantilever was then fixed upright on 
a shaking table with six degrees of freedom, as shown in Figure 4.4 (Konagai et al., 
1999), because it was expected that the bending of the cantilever would cause a rocking 
motion in its foundation. The feedback gains, β , of the servo-amplifier for this shaking 

table are set at 0.53 and 0.41 in respect to horizontal and rocking degrees of freedom. 
Mechanical properties of the cantilever are listed in Table 4.1. The cantilever is rather 
flexible, with its natural frequency set approximately at 1Hz, so that interaction forces 
(both shear force px  and moment pθ ) are easily measured by bonding strain gages to 

the lower end of the cantilever. This flexible cantilever was assumed to be mounted 
virtually on a circular rigid mat foundation (radius ( r0 ) = 1.2 m, thickness (d) = 0.2 m, 
Table 4.3) resting on a soft semi-infinite half-space of soil ( vs = 9 m/s, Table 4.2).  

Meek and Wolf6), 7) have developed a unified approach for soil-structure interaction 
analysis by using truncated semi-infinite cone models representing an unbounded soil 
medium (See Chapter 3, 3.5, p. 44). According to their approach, the soil supporting a 
rigid mat foundation is idealized for each degree of freedom as a truncated semi-infinite 
elastic cone with its own apex height z0  (Figure 4.5). They also showed that the 

stiffness parameters for sway and rocking motions are approximated by those of 
discrete element models illustrated in Figure 4.5. The flexibility, H sxx ( ) , of the 

discrete-element model in horizontal x direction is described as: 
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  H s
sC Kxx

x x

( ) =
+
1         (4.9) 

where, 

  K
v r

zx
s s=

⋅ρ π2
0

2

0

     (4.10a) 

        C v rx s s= ⋅ρ π 0
2     (4.10b) 

and vs  is the shear wave velocity propagating through the cone that dominates the 
stiffness within considerably high frequency range. The apex ratio z r0 0/ , or the 

opening angle of the cone, is determined by simply equating the static stiffness 
coefficient of the disk on the semi-infinite soil half-space to that of the corresponding 
cone, and is given by: 

 
Fig. 4.4  Upright beam on shaking table 

 
Table 4.1  Parameters of cantilever 

width 
(m) 

Height 
(m) 

thickness 
(m) 

Bending stiffness EI 
(Nm2) 

density ρ  
(kg/cm3) 

0.3 1.8 0.008 2132.5 0.00801 
 

Table 4.2  Soil properties 
Density sρ  

(kg/cm3) 
shear wave 

velocity 
sv (m/s) 

Poisson’s ratio  
ν  

0.0016 4.8 0.5 
 

Table 4.3  Parameters for foundation 
Radius 0r  

(m) 
thickness d 

(m) 
density cρ  

(kg/cm3) 
0.8 0.1 0.0025 
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  z
r

0

0 8
2= −π ν( )     (4.10c) 

As far as the rocking motion of the disk is concerned, a rotational cone should be 
discussed. The flexibility, H sθθ ( ) , of the equivalent-discrete-element model in rocking 

motion is described as: 
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θ
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         (4.11) 

where, 

  K
v I
z
s

θ
ρ

=
3 2

0

0

     (4.12a) 

  C vIsθ ρ= 0     (4.12b) 
  M z Isθ ρ= 0 0      (4.12c) 

with     I r0 0
44= ( / )π     (4.12d) 

The velocity v  is assumed to be identical to that of the longitudinal wave traveling 
through the cone when Poisson’s ratio of the soil is less than 1/3. For larger values of 
Poisson’s ratio, v  is set at 2 vs . The apex ratio z r0 0/  of the rotational cone is: 

  z
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v
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π ν( )      (4.12e) 
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Figure 4.5 Mat foundation and equivalent discrete element model 
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In actuality, the lateral and rocking motions of a foundation are coupled, and the present 
method illustrated in Figure 1.1 (Chapter 1) allows the effect of the coupling to be 
simulated. The coupling effect, however, is ignored in this simulation.  

As has been mentioned, electric-resistance strain gages were used as a sensing device 
for both shear-force and moment. A pair of strain gages were bonded on both sides of 
the lower end of the cantilever to sense the strain in the cantilever resulting from the 
bending motion of the cantilever. The outputs of strain gages are then connected to an 
appropriate bridge circuit that produces a signal proportional to the bending moment. 
Another pair of strain gages were then pasted 10 cm above them, and the measurement 
of moments at these two points permitted a determination of the shear force at the lower 
end of the cantilever. It is noted that the moment and the shear force sensed by these 
strain gages are not identical yet to the interaction forces, px  and θp , on the 

soil-foundation interface. The interaction forces are to be evaluated taking into account 
the inertia forces of the foundation virtually resting on the half-space of soil. For this 
evaluation, both lateral and rocking accelerations, &&ux  and &&uθ , were measured on the 
shaking table, and the signals of &&ux  and &&uθ  were multiplied respectively by the 
foundation mass, M x  ( = ⋅ρ πc r d0

2 ), and the moment of inertia, M p  ( = +ρc trapI d M0 ), 
where Mtrap  is the contribution of the soil mass caught beneath the foundation, and is 

given by: 

  M I rtrap s= −





12 1
3 0 0. ν ρ        (4.13) 

A horizontal impulse shown in Figure 4.6 was given to the shaking table as an effective 
foundation input motion, u ux

f
x
s+ , and the acceleration response at the top end of the 

cantilever was measured. The dotted line in Figure 4.7a shows the acceleration time 
history without the interaction motions, ux

r  and ur
θ , being added; whereas the dotted 

line in Figure 4.7b shows the response affected by the interaction motions. Thick lines 
in these figures show the computed responses of the discrete element model in Figure 
4.5. In this numerical simulation, the finite difference method was utilized to obtain the 
solutions in the time domain. The thick and dotted lines are in good agreement in both 
figures; this fact clearly demonstrates that, for the simulation of soil-structure 
interaction motions, the present method works properly as expected. These figures show 
that incorporating the effect of the interaction motion leads to the increase of damping 
and to the slight decrease of natural frequency as well. Although only horizontal base 
motion was given to the shaking table, bending motion of the cantilever eventually 
caused the shaking table (the virtual foundation) to rock as shown in Figure 4.8. The 
observed rocking motion, ur

θ , is also in good agreement with the numerical simulation 

(thick line).  
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Figure 4.7  Accerelation at the top end of upright beam 
 

   The present system is conditionally stable as is often the case with feed-back control 
systems. Especially when a structure model with low damping ratio is shaken, the 
motion of the shaking table sometimes echoes through the circuit causing a serious 
clattering (howling) of the table. Figure 4.9 shows one example of clattering that 
happened before the table was properly heated up and stabilized. The predominant 
frequency of the noise is 11 Hz, and is about identical to the fourth natural circular 
frequency of the model. When the predominant frequency is higher than the frequency 
range in which the desired signal exists, a low-pass filter may be used to reduce the 
noise. It is however noted that the use of a low-pass filter causes the response of the 
table to be more delayed. Some built-in device such as an adaptive echo canceller10) 
would be useful for further improving its performance. 
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Figure 4.8  Rocking of shaking table 
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Figure 4.9  Howling observed at the top end of upright beam 
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4.3.2 Slippage of rigid block on mat foundation 
 
A rigid cylindrical block is assumed to be put on a rigid and circular mat foundation 
resting on a semi-infinite half medium of soil (Figure 4.10a). The dimensions of both 
the prototype block and foundation are listed in Table 4.4, whereas Table 4.5 shows the 
parameters for the soil medium. Poisson’s ration of the soil was set at 0.5 on the 
assumption that the ground is an alluvial soft soil deposit that is totally saturated with 
water. In this case also, the soil supporting a circular mat foundation is idealized for 
each degree of freedom as a truncated semi-infinite cone (Figure 4.10b) with its own 
apex height 0z . Only translational motion of the foundation is discussed herein, and the 

soil-foundation is modeled by a damped one-degree-of-freedom system. The model of 
the soil-structure system is then prepared by reducing the parameters, m, k and c to the 
uniform scale of 1 to 100. Since the ratio of these parameters is kept unchanged, the 
time scale is not changed at all.  

r0

z0

vT

rigid block

half space of soil

rigid block

 
 

a Rigid block on mat foundation     b translational cone 
 

Figure 4.10  Rigid block put on a rigid mat foundation 
                  resting on a semi-infinite soil medium 
 
 

Table 4.4  Dimensions of block and foundation 
 (a) block 

Mass Radius Height 
7.1×105 kg 7 m 2 m 

 
(b) mat foundation 

Mass Radius Height 
1.4×106 kg 11 m 1.6 m 

 
Table 4.5  Mechanical properties of soil 
Density Shear wave 

velocity 
Poisson’s ratio 

1.6×103 kg/m3 100 m/s 0.5 
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Figure 4.11 shows the model put on a shaking table. The steel block in the middle is 
the model of the rigid block, and the shaking table itself virtually represents the motion 
of the mat foundation on the semi-infinite soil half-space. The block is put not directly 
on the shaking table but on a flat steel plate supported by four stiff upright legs with 
strain gages pasted on them. These gages pick up the base shear force from the block. 
An impulse as shown in Figure 4.12 is given to the shaking table as an input motion 
ux . The test was also conducted for the above block model put on the rigid base. Figure 

4.13 shows time histories of both the displacement of the shaking table and the distance 
that the block has slipped. Dotted lines in this figure show the motions without the 
interaction effect being taken into account, whereas thick lines show the motions 
affected by the soil-structure (foundation-block) interaction. Incorporation of the 
soil-structure interaction leads to slight increase in the duration of the base motion and 
drastic decrease of the distance that the block has slipped. The mass of the block is the 
direct cause of the increase in the duration of the base motion, and the decrease of the 
sliding distance is closely linked with the increase of the energy that has dissipated as 
outwardly propagating waves into the virtually spreading soil medium. The present 
method allows both influx Einput  and efflux Edissipated  of energy through the 

foundation to be measured in real time. These two kinds of energy are respectively: 

  ( )E p u p u dtinput x x

t

= + ⋅∫ & &θ θ
0

    (4.14a) 

  ( )E p u p u dtdissipaed x x

t

= − − ⋅∫ ~& ~&
θ θ

0

   (4.14b) 

The energy, Econsumed , used up within the model on the shaking table is then obtained 

as:  
  E E Econsumed input dissipated= −    (4.14c) 

Figure 4.14a shows the variations of these energies with time where the interaction 
effects are ignored, and thus, the cumulative loss of energy through friction ends up to 
be the same amount as the energy influx. On the other hand, Figure 4.14b, in which 
soil-structure interaction effects are incorporated, shows that a part of influx energy 
dissipates away and just the remainder is used up through friction.   
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   Figure 4.12  Displacement of shaking table and distance that block has slipped   
 
 
 

 
 

Figure 4.11   Block model on shaking table 
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Fig. 4.13  Influx, efflux and consumption of energy 
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4.3.3 Bilinear viaduct pier model on a pile group embedded in non-linear soil 
 
Ground response analysis 
An application of the present method to a particular prototype is henceforth described to 
explain the steps of the method in an effective way. The prototype is an expressway 
viaduct supported by pile foundations. Information regarding the ground profile of the 
site is provided in Table 4.6. Since pile foundations are quite flexible in nature, it is 
assumed here that they follow the deformation of their surrounding soil. Therefore, in 
the non-linear ground response analysis, only the soil without the presence of any 
foundation was subjected to an earthquake excitation. 
 

Table 4.6. Ground profile at the site of the prototype 
Thickness 

 
h (m) 

Unit weight 
 

γ (tf/m3) 

Shear wave 
velocity 
Vs (m/s) 

Shear Modulus 
 

G0 (tf/m2) 
3.8 1.9 144.0 4020 
3.6 1.9 129.3 3241 
12.2 1.4 159.8 3648 
0.9 1.9 173.2 5816 
11.5 1.4 159.5 3634 
5.0 1.9 161.0 5026 
6.0 1.9 188.2 6867 

 
The ground response analysis was carried out considering only vertically propagating 
horizontal SH waves. Hence the ground profile of Table 4.6 was modeled as a one 
dimensional horizontally layered soil column having non-linear soil properties. For the 
analysis the Finite Element Method was adopted in spatial domain and the Finite 
Difference Method in time domain. To express the non-linear stress-strain relationship 
of each layer of the soil column, the Hardin-Drnevitch model was adopted in 
association with the Modified Masing rule. In order to take radiation damping into 
account, a dashpot was attached at the bottom of the soil column. For shear wave 
propagation through a one-dimensional semi-infinite medium, the damping coefficient 
of the dashpot is given by, 

rsr VGC /=        (4.15) 
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Where, rG  and 
rsV  are the shear modulus and shear wave velocity of the base rock, 

respectively. 
The soil column was subjected to a sample base excitation for the non-linear ground 
response analysis. The north-south component of the acceleration record of the 
earthquake that occurred at Shizukuishi in Iwate prefecture, Japan on September 3, 
1997 [Konagai et al., 1999] was used as the sample base excitation, shown in Figure 
4.14. The analysis yields the displacement history at the surface layer, shown in Figure 
4.15, and the stress-strain histories of all the layers. At each reversal point of the 
stress-strain history the corresponding secant shear modulus was determined. The 
method of determining the secant shear modulus is illustrated in Figure 4.16. Figures 
4.17(a) and 4.17(b), respectively, show the variations of the secant shear moduli and the 
corresponding damping ratios of different layers of the soil profile with time. 
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Figure 4.14. Sample base excitation 
 

 

Figure 4.15. Displacement history at the surface layer 
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Figure 4.16  Determination of secant shear modulus 
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     (a) Variation of secant shear modulus          (b) Variation of damping ratio 

Figure 4.17  Variation of equivalent linear parameters with time 

 
Determination of stiffness function 
In order to determine the stiffness function, TLEM (Ver. 1.2, See Chapter 2 and 
Appendix 3) was employed to the soil-profile, correspoding to a particular time instant 
of the duration of the excitation, in order to obtain the dynamic stiffness at that time. 
The analysis yielded the dynamic stiffness of the substructure as a function of the 
forcing frequency. For pile-groups, some frequency invariant parameters (K, C, and M) 
can be defined to describe the stiffness function, as was explained in Chapter 2. Similar 
analyses are carried on for the soil profiles corresponding to other time instants as 
derived by the ground response analysis. The non-linear ground response analysis and 
the subsequent idealization of the non-linear parameters to equivalent linear parameters 
provided the necessary information of soil for the linear analysis of the pile-soil 
interaction. Figure 4.18 shows a typical layout of the pile-groups of the viaduct. The 
outer and inner radii of each steel pile are 0.41m and 0.39m respectively. 
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Figure 4.18  A typical pile-group layout of the Misato viaduct 
 
The variations of K, C and time-constant, T (=C/K) are shown in Figures 4.19(a)-(c) 
with linear interpolation between the values obtained from the analysis. The value of M 
was found to remain nearly constant at 20 tf-s2/m. Figures 4.19(a)-(c) show the 
non-linear feature of the initial softening of soil and then its subsequent rehardening in 
the course of an earthquake excitation. 
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  (a) Variation of stiffness    (b) Variation of damping   (c) Varation of time-constant 

Figure 4.19  Variation of the different parameters of the substructure 
 
Simulation 
Since the experiment was mainly focused on studying the change in dynamic behavior 
of the structure due to the incorporation of soil-structure interaction effects, an exact 
physical model of the prototype structure was not necessary. Therefore, instead of 
making such an exact model, an attempt was made to model the dynamic features of the 
prototype. 
A typical pier of the viaduct was considered as the prototype under study. The weight 
the pier sustains is around 666tf, and its resonance frequency is about 1Hz. The 
dynamic force displacement relationship of the pier is produced in Figure 4.20. From 
Figure 4.20, it is evident that the force-displacement curve can be approximated as a 
bilinear one. One simple way to model this bilinear force-displacement relationship is to 
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place a mass on top of a frame so that the mass slips when the acceleration exceeds 
beyond the level that the friction between the mass and the frame can resist. Below this 
level the mass moves with the frame. If the frame exhibits a linear feature, the 
mass-frame model posseses a bilinear force-displacement relationship. 
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Figure 4.20. Force-displacement relationship of the pier 
 
Experimental setup 
In the present experiment, a mass of 6.75kg was placed on a steel frame. A teflon sheet 
was used to reduce friction between the mass and the crossbeam of the frame. A 
photograph of the experimental set-up is shown in Figure 4.21. The frequency of the 
steel frame was 2Hz. Since the frequency of the frame was two times of that of the 
prototype, the duration of the input motion as well as the time-constant of the 
interaction flexibility function was halved. From Figure 4.20, it is found that the pier 
carrying a mass of 666tf shows plastic deformation beyond an acceleration of 600gal. 
But the average frictional coefficient between the mass and the teflon sheet was found 
to be around 0.2. Therefore, the mass slipped when acceleration exceeded 200gal. 
Again the ratio of model displacement, mu  and prototype displacement, pu  can be 

expressed in terms of the ratio between model frequency, mω  and prototype frequency, 
pω  and the ratio between model acceleration, ma  and prototype acceleration, pa  as, 

   
pm

mp

p

m

a

a
u
u

2

2

ω

ω
=             (4.16) 

Therefore for the present case the input motion had to be scaled down by a factor of 
1/12. 
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Figure 4.21. The experimental set up 
 
A SIMULINK model, as is shown in Figure 4.22, was prepared to input shaking table 
motion and to add the soil-structure interaction motion to the input motion. The motion 
realized, by means of a digital signal processor, at the shaking table was adjusted by the 
FFM Gain so that it corresponds to the 1/12th of the prototype motion of Figure 4.15. 
The signals picked up by the force transducers attached at the bottom of the columns of 
the steel frame were fed into the SIMULINK model through AD converter of the digital 
signal processor. The signal was then passed through the flexibility function to produce 
soil-structure interaction motion. 
The SSI Gain was used for consistent modeling of the substructure dynamics. The 
initial stiffness of the prototype substructure was found to be about 50 times the 
stiffness of the pier. The value of the SSI Gain was adjusted so that in the absence of 
any input motion, a static displacement of the frame produced a displacement of the 
shaking table 1/50th of that of the frame. The parameters of the flexibility function were 
changed in real time with an MLIB routine. A gap sensor was used to measure the 
relative displacement between the mass and the frame. The displacements of the frame 
and the shaking table were measured with laser sensors. Accelerometers were used to 
measure accelerations of the mass and the frame. 
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Figure 4.22. SIMULINK model 

Results 
One of the major concerns of the feedback control of dynamic systems is the reliability 
of the realized input motion. If the input motion is not realized at the shaking table in 
real time, the delay causes a delayed interaction motion which when added to the 
free-field motion fails to reflect appropriate interaction effects. For the purpose of 
checking the reliability of the realized motion, the signal of the input motion before 
inputting to the controller of the shaking table and the motion realized at the shaking 
table were both measured at the same time. During this measurement the SSI Gain was 
set at a value of zero i.e., there was no interaction effect involved. Both the measured 
signals are shown in Figure 4.23. Figure 4.23 shows that the input motion was realized 
with adequate reliability. 
When interaction effect is considered, the displacement of the frame was found to 
deviate from the displacement when there was no interaction (Figure 4.24(a)). Similar 
deviation can be observed in the displacement of the mass too (Figure 4.24(b)). Marked 
difference can be noticed in the displacement of the frame between the 7th and 10th 
second when the stiffness of the flexibility function is small and the time-constant is 
high due to the non-linearity of soil. At the latter part of the displacement history of the 
frame when input motion is about zero, the effect of increased damping due to 
soil-structure interaction is quite evident. It should be mentioned here that the slippage 
of the block is not always the same even for the same input motion and even without 
interaction. After repeating the same experiment a number of times, a representative 
result has been produced in Figure 4.24(b). 
 
 



68 REAL TIME CONTROL OF SHAKING TABLE FOR SOIL-STRUCTURE … 

 

5 10 15
-1.0

-0.5

0.0

0.5

 input motion
 realized motion

D
is

pl
ac

em
en

t o
f 

sh
ak

in
g 

ta
bl

e 
(c

m
)

Time (s)

 

Figure 4.23 Reliability of the realized motion 
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Figure 4.24. Displacement of (a) the frame and (b) the mass with respect to the frame 
 
 
At the absence of any soil-structure interaction the total input energy is consumed 
through the friction of the mass and the damping of the frame. Whereas the interaction 
between soil and structure causes a large amount of energy to dissipate as outwardly 
propagating waves into the virtually spreading soil medium. This dissipation of energy 
causes less energy to be consumed by friction and thereby reduces the slippage of the 
mass. As shown in 4.3.2 (pp. 58), the present method allows both influx of energy, 

inputE  and efflux of energy dissipatedE  through the foundation to be measured in real time. 

These two quantities associated with lateral motions are respectively: 

∫ ⋅=
t

xxinput dtupE
0

&  and ∫ ⋅−=
t

xxdissipaed dtupE
0

~&     (4.17a), (4.17b) 
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The energy, consumedE  used up within the model on the shaking table is then obtained 

as:  
dissipatedinputconsumed EEE −=                 (4.17c) 

The energy is consumed within the model in two mechanisms: one due to the damping 
of the frame and the other through friction of the mass and the teflon sheet. The energy 
consumed due to the damping of the structure is given by, 

∫ ⋅=
t

fdamp dtucE
0

2&               (4.18a) 

where c  and fu&  are respectively the damping coefficient and velocity of the frame. 

The energy used up due to friction can be calculated as, 

∫ ⋅=
t

slipbfric dtuumE
0

&&&         (4.18b) 

where m  and bu&&  are respectively the mass and acceleration of the block and slipu  is 

the distance the block slips with respect to the frame. Thus consumedE  can also be 

expressed as 
fricdampconsumed EEE +=          (4.18c) 

Figures 4.25(a) and 4.25(b) show the distribution of energy in two different cases: one 
without any consideration of the interaction and the other considering the interaction 
effects. The difference between the input energy and the total consumed energy in these 
figures corresponds to the kinetic and potential energy components of the mass and the 
frame when they are in motion. In relation to the prototype, it can be said that the 
soil-structure interaction causes dissipation of energy through soil which results in less 
plastic deformation of the pier. Any prediction based on experimental results not 
considering the interaction may overestimate the amount of plastic deformation 
accumulated in the pier after an earthquake. 

0 5 10 15 20
-0.05

0.00

0.05

0.10

 input energy
 energy consumed through friction
 total energy consumed

          (ie., through friction and damping)

En
er

gy
 (J

)

Time (s)
 

0 5 10 15 20
-0.05

0.00

0.05

0.10

 input energy
 energy dissipated through soil
 energy used up through dissipation and friction
 total energy consumed

          (ie., through dissipation, friction and damping)

En
er

gy
 (J

)

Time (s)
 

 (a) without interaction   (b) with interaction 

Figure 4.25. Distribution of energy 
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4.4 SUMMARY 
 
A new method for a model experiment on a shaking table has been examined. The 
present method allows soil-structure interaction to be simulated. In the present method, 
soil-structure interaction effects are simulated by adding appropriate soil-structure 
interaction motions to the free-field ground motions at the shaking table. The method 
was initially developed with the assumption that soil behaves linearly. In the present 
report, the method was extended to take the ‘far field’ soil non-linearity into account 
through an equivalent linear approach. The non-linearity produced in the vicinity of 
foundations, which is usually associated with large strain and separation between soil 
and foundation, has not been considered in this study. In this method, the dynamic soil 
parameters were varied in real time by means of a digital signal processor. The method 
on one hand captures the non-linear soil behavior of softening and re-hardening during 
the course of an earthquake, and on the other hand, allows testing of a bigger 
superstructure model by obviating the need of a heavy physical ground model. This 
method thus has the potential to be applied to a variety of experiments of soil-structure 
interaction without preparing any physical soil model. The conclusions of this study are 
summarized as follows: 
(1)  The present system is realized on condition that a shaking table produces faithfully 
its input motion. The motion produced by the shaking table, however, is not exactly 
identical to the intended time history because the ratio of output-to-input amplitude of 
the system does not remain the same over the frequency range desired. The performance 
of the system’s transfer function is also affected by the presence of a model on the 
shaking table, a fact that may cause the motion of the table to further deviate from the 
input. This effect will be canceled by multiplying the flexibility function, H , of a 
soil-foundation system by the inverse transfer function, T −1 , of the shaking table 
system. This manipulation, however, leads to reducing both the mass, M, and the 
viscous damping coefficient, C, making up the discrete element model equivalent in 
mechanical properties to the soil-foundation system. Needless to say, the reduced mass, 
M M− ∆ , and the damping coefficient, C C− ∆ , must be positive. The conditions are 

usually satisfied in reality for many cases of soil-structure interaction because wave 
radiation from a foundation leads the motion of the structure to be noticeably damped. If 
not, it would be necessary for the time delay to be minimized. One possible measure for 
reducing the time delay is to increase the feedback gain of a servo-amplifier of the 
shaking table. It is, however, noted that the increase of feedback gain leads to a decrease 
in the margin for unstable clattering of the table that is caused by the noise echoing 
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through the closed circuit of the servo-amplifier. 
(2)  In order to provide a proper perspective on the usefulness of the present method, a 
simple upright 2,000 mm long steel cantilever was shaken on a shaking table. The 
observed responses of the beam showed that incorporating the effect of the interaction 
motion leads to the increase of damping and to the slight decrease of natural frequency 
as well. The numerical simulations were in good agreement with the observed 
responses, demonstrating that the present method for the simulation of soil-structure 
interaction motions works properly as expected. It is, however, noted that unexpected 
noise amplification can cause serious problem in operating the shaking table when a 
less-damped structure model is tested on a shaking table. 
(3) A steel block was put on a shaking table that virtually represents the sway motion of 
a rigid circular mat foundation on a semi-infinite half space of soil. An impulsive 
displacement was then given to the shaking table as an input free-field motion, and both 
the displacement of shaking table and the distance that the block slipped were 
measured. Incorporation of the soil-structure interaction led to slight increase in the 
duration of the base motion and noticeable decrease of the distance that the block 
slipped. 
(4) A steel block was placed on the top of a frame, which was assumed to dynamically 
correspond to a viaduct pier exhibiting a bilinear feature of force-displacement 
relationship. The prototype pier is supported by a pile-group foundation embedded in a 
nonlinear soft soil deposit. The model was subjected to an earthquake excitation. The 
results obtained from the experiment show some important features of the soil-structure 
interaction effects. The incorporation of soil-structure interaction led to a noticeable 
decrease of the distance that the block slipped. 
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APPENDIX I:  Stiffness matrix of equivalent single beam  
 
The soil and pn  piles system is divided into Ln  horizontal slices as shown in Figure 

2.2. Assumptions (1) and (2) imply that the deflections of the piles are all completely 
identical, allowing the deflections of all piles to be equally described by the same 
equation. Piece-wise increments of deflection angle { }θ∆  along the piles are described 
in terms of lateral displacements { }u  as: 
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(A2) and 

1w  is the anti-symmetric vertical motion of the pile cap at 0Rr = . The component, 

01 / Rw , in short, is the deflection angle at the pile cap. 
Given the piecewise increments of deflection angle { }θ∆ , and applying the Method 

of Three Moments, the internal moments { }intM  induced in the beam are described as: 

{ } [ ] { }θDM ∆= −1
int  (A3) 

where, 
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(A4) 

with   ppp IEnEI =  ( =pp IE bending stiffness of an individual pile). (A5) 
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It is noted that the moments { }intM  are expressed in terms of lateral external forces 
{ }xp  as: 

{ } [ ] { }xpLM ⋅= −1
int  (A6) 

From Equations (A1), (A3) and (A6), one obtains 
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Assumption (4) implies that the overall anti-symmetric rocking motion of a pile group is 
controlled by axial motions of the piles. In other word, external moments on the 
soil-pile composite from its surrounding soil are sustained by the piles which experience 
alternate push and pull in their axes. External moments due to the anti-symmetric 
vertical motions { }w  are described as: 
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(A9) 

The stiffness parameter EI G  in Equation (A9) is evaluated following the same 
procedure as that used for the evaluation of bending stiffness of a reinforced concrete 
beam. Namely, EI G  is assumed to be equal to the sum of the 
Young’s-modulus-weighted products of all the elementary areas times their distances 
squared from the centroid of the cross-section AG  (Figure 2.2a).  

  Internal moment caused by the lateral motions of the beam appears as external 
moment 1M∆  at the pile cap. This moment must be added to 1M . From Equation 
(A3), 1M∆  is described as: 

[ ] [ ]{ }{ }
0

11
1,1

1
1 1

R
wDmatrixofrowstM T ⋅+=∆ −− uLD  (A10) 

where, 1
1,1

−D  = upper-left corner component of the matrix, [ ] 1−D . 

  Given Equations (A7), (A8) and (A10), the global stiffness matrix of the equivalent 
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single beam is finally expressed as: 
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APPENDIX II: Effect of Winkler Spring pk  on Novak’s Solution  
 
Novak’s solution gives stiffness ks  for the lateral motion of a massless disk embedded 

in an infinite horizontal plane. The equation governing the motion of the plane with the 
inclusion of the disk is expressed in a compact form as: 

{ } [ ]{ }uu L=&&pρ  (A12) 
where, [ ]L  is a second-order differential spatial operator. In the frequency domain, 

Equation (A12) is rewritten as: 
{ } [ ]{ }uu L=− pρω2  (A13) 

When the plane spreads over uniformly distributed discrete springs k p , the reaction 

forces from the springs must be added as: 
{ } [ ]{ } { }uuu pp k−=− Lρω2  (A14) 

Transferring { }upk  in Equation (A14) to the left-hand side, one obtains: 

( ){ } [ ]{ }uu L=− ppk ρω2  (A15) 

Equation (A15) is re-expressed in the following form, 
( ) { } [ ]{ }uu L=− pρηω 2

0  (A16) 

with 
p

pk
ρ

ω =0  (Equation (2.6)) and 
2

0

1 





−=

ω
ωη  (Equation (2.9c)). 

It is noted that Equation (A16) has the same form as Equation (A13) with ω  simply 
replaced with ηω0 . Thus, substituting ηω0  in place of ω  in Equation (2.8) (Novak’s 
solution), the equation reflects the presence of the Winkler-type springs pk .    
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APPENDIX III: "BASPIA" and "TLEM" 
 
In the course of this study, the idea of treating a pile group beneath a super-structure as a 
single upright beam has yielded BASPIA (Beam Analogy for Soil-Pile group 
Interaction Analysis), a program allowing soil-pile group interaction analysis to be 
made with less time and effort. BASPIA includes TLEM (Thin-Layered Element 
Method) as a solver that describes a soil stratum as an infinite stratified medium with 
the inclusion of a cylindrical hollow, in which a foundation is fitted. BASPIA with the 
restricted version of TLEM for WINDOWS is a freeware that can be downloaded from 
the from the following URL: 
     http://norway.iis.u-tokyo.ac.jp/BASPIA.htm 
 
NOTES: 
1)  BASPIA: Beam Analogy for Soil-Pile group Interaction Analysis, © 1998 Kazuo KONAGAI, 

IIS, University of Tokyo. All rights reserved. 
2)  This program uses EXCEL (Ver. 7.0 or EXCEL 98) as a post-processor. EXCEL must be 

installed in your computer in advance. EXCEL and Windows are registered trade marks of 
Microsoft Corporation. 

3)  The editor of BASPIA has been developed taking its prototype from ‘vbgrid.vbp’ by Haruhiko 
HAYASHI in his book ‘Advanced Programming with Visual Basic’, SOFTBANK 1997 
(ISBN4-7973-0473-1). No part of this program including this editor may be reproduced or 
distributed in any form or by any means, or stored in a database or retrieval system, without the 
prior written permission of Kazuo KONAGAI, Prof., IIS, University of Tokyo, the developer of 
BASPIA. 

 
INSTRUCTIONS FOR DOWNLOADING 
(1)  Visit the BASPIA download page: 
    http://norway.iis.u-tokyo.ac.jp/BASPIA.htm 
(2)  You can download both BASPIA and its manual (MS Word 97 document file). 

They are archived by using ZIP. 
(3)   After getting them stored in an appropriate folder in your computer, double-click 

them. And you get both automatically extracted in appropriate folders that you 
designate.  

(4)  Among those files extracted, find ‘setup.exe’. Double-click it, and you get BASPIA 
installed just by following instructions displayed one after another.  

(5)  A password is needed to run BASPIA. The default password is ‘opensesame’. You 
can change it from a hidden credits screen of BASPIA. This method, however, is 
secret. If you want to get your own password, e-mail me at 
konagai@iis.u-tokyo.ac.jp. 
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BASPIA for Windows  (Solver: TLEM ver. 1.2) 

 
BASPIA (Beam Analogy for Soil-Pile group Interaction Analysis) offers a 
point-and-click Graphical-Users-Interface to TLEM (Ver. 1.2) that allows soil - pile 
group interaction to be rigorously evaluated in the frequency domain. The original series 
of TLEM programs (Vers. 1.0, 1.1 and 1.2, FORTRAN77) have been developed on the 
basis of the Thin Layered Element Method for the analyses of soil-embedded 
foundation interactions. Embedded foundations include upright vaults, mat foundations 
and pile foundations as well. 
 
Piles, grouped beneath a superstructure, interact with the surrounding soil during an 
earthquake. Straight-forward evaluation of the pile-soil-pile interaction, however, is 
cumbersome especially in dealing with tens or hundreds of piles groped together. In 
BASPIA for Windows (TLEM Ver. 1.2) a group of piles is viewed as an upright 
Equivalent Single Beam.  
 
When you click the BASPIA icon, you will see the following window popping up. 

 
 
Then, type the allotted password in the bottom text-box. 
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And you will get the following tag “Post proc.”    automatically clicked. 

 
 
Though the original versions of TLEM provide a variety of output files, this version of 
BASPIA for Windows allows you to examine dynamic (1) pile cap stiffnesses and (2) 
effective input motions which are graphically displayed by using EXCEL as a 
post-processor. EXCEL is thus needed to be installed in your computer in advance. 
Check if the correct path is displayed in the bottom text box. If not, type the correct 
path. 
 
Then, click OK, and the third tab “BASPIA” comes up.  

 
 

And you are ready to edit data files for BASPIA. Needless to say, you are not allowed in 
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this stage to examine any output data without them. Click “Edit data files” to start the 
editor of BASPIA.  

 
 
The following four data sets are to be prepared for running BASPIA for Windows. 
1. soil 
2. pile arrangement 
3. pile properties 
4. frequencies 
Units of the necessary parameters should be consistent with each other.  
 The editor allows you to line-edit necessary data. See [Edit buttons] and [Key for 
edition] 
 As the four data files are created in order, corresponding square check-boxes in the 
upper right area of the window are checked one by one. After creating all four files, you 
are allowed to exit the editor and to run BASPIA for Windows. If you get lost in 
editing files, use “What’s this?” Help ([?] button) that offers you important hints to 
get rid of your trouble.   
 
1. soil 
Parameters describing soil properties must be given layer by layer: 
Lamda (real lamda, imag. Lamda) = Lamda of Lames constants. Complex number. (tf/m2) 
mu (real mu, imag. mu) = shear modulus of soil. Complex number. (tf/m2) 
density = Density of soil. Real number. (tf s2/m4) 
depth = Depth of lower end of layer. Real number. (m) 
 
2. pile arrangement 
Locations of piles are described in x-y coordinates. When inertia interaction is concerned, lateral 
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force is assumed to be applied to a pile cap in x direction. 
 
3. pile properties 
Parameters describing pile properties must be given layer by layer: 
outer radius = outer diameter of a single pile (m) 
inner radius = inner radius of a single pile (m) 
Young (Real Young, imag. Young) = Young’s modulus of pile material. Complex number 
(tf/m2) 
density = density of pile material (tf s2/m4) 
 
4. frequencies 
BASPIA for Windows provides frequency-domain solutions of important soil-structure 
interaction parameters. It is therefore necessary to specify the following frequencies: 
No of omegas = number of circular frequencies to be checked out. Integer value. 
particular freq. = at this step of frequency-domain computation, a data file “space_dsp.dat” storing 
spatial distribution of soil displacement will be created. 
initial omega = initial value of circular frequency 
increment omega = incremental circular frequency 
 
[Edit buttons] 
Buttons for editing data files 
line up Moves the selected line one grid unit up. 
Line down Moves the selected line one grid unit down 
insert line Inserts a new empty line immediately above the selected insertion line 
delete line Deletes the selected line(s) 
copy line Copies the selection (line(s)) to the Clipboard. 
Paste line Pastes the Clipboard contents immediately above the selected insertion 

line 
sort ascend Sorts in ascending order 
sort descend Sorts in descending order 
 
[Key for edition] 
Start edition in the selected cell (Back color of the selected cell = white) 
[Space] Starts edition in the selected cell with the cursor set at the head of the 

existing string of letters 
[Enter] Starts edition in the selected cell with the cursor set at the end of the 

existing string of letters 
[F2] = [Enter] 
[Back space] Clears the selected cell and starts edition. 
[Delete] = [Back space] 
others Starts edition in the selected cell 
 
Edit in the selected cell (Back color of the selected cell = yellow) 
[Esc] Quits editing in the selected cell with everything undone. 
[Enter] Quits editing in the selected cell 
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[Up arrow] Quits editing in the selected cell, and moves one grid unit up 
[Down arrow] Quits editing in the selected cell, and moves one grid unit down 
[Others] Continues typing 
 
When you returned from the Editor, you are now ready to run “BASPIA”. Click “Run 
BASPIA” button. 

 
 
After running BASPIA, you will see the “Show result” button is enabled to be clicked.  

 
 
Then, click “Show reslt” button, and you can examine the result by using EXCEL. 
 

Good Luck ! 



  Program manual No. 6  

 

 
 
 
 
 
 
 

Guide to “TLEM1.2” 
(SOLVER in BASPIA) 

by 
 

Kazuo KONAGAI 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

July 12, 1999 
 

Konagai Laboratory 
Institute of Industrial Science 

University of Tokyo 
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July 12, 1999 
 

Thin-Layered-Element Method for Dynamic Soil - Pile Group 
Interaction Analysis (Solver in BASPIA) 

 
Kazuo KONAGAI 

 
1. INTRODUCTION 
This note has been prepared for the users of “TLEM” (Thin-Layer-Element Method, 
Ver. 1.2) that allows the soil - pile group interaction effects to be rigorously evaluated. 
A pile group is assumed to be an upright single beam embedded in a horizontally 
layered soil deposit with infinite extent.  
 
2. WHAT CAN WE DO WITH “TLEM”? 
  A soil-structure system is divided into two substructures, the super-structure and the 
unbounded soil extending to infinity; the latter includes an embedded foundation as 
illustrated in Fig. 2.1. In the lower substructure of soil, an earthquake will cause soil 
displacements { }u f . The foundation embedded in this soil deposit, however, will not 

follow the free-field deformation pattern. This deviation of the displacements from the 
free-field soil displacements { }u f  is denoted by { }u s . The mass of the 

super-structure then causes it to respond dynamically, and the forces { }P  transmitted 
to the lower substructure of soil and foundation will produce further deformation of soil 

{ }u r  (inertia interaction) that would not occur in a fixed base structure. Thus, the 

displacements of soil { }u  are eventually expressed by the following equation as: 

 { } { } { } { }u u u u= + +f s r       (1.1) 

  In this program, TLEM, a pile group is approximated by a single beam with a circular 
cross-section of radius R0  embedded upright in a stratified soil, and this foundation is 

u f +u s
Px

M

u f +u s u R
+

y
y

z

x
θ

R 0

 
 

Fig. 2.1  Two primary causes of soil-structure interaction 
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excited in x direction. This assumption calls for the displacement components of the soil 
and its inclusion to be proportional to either cosθ  or sinθ , and it will be shown later 
on that displacements { }u r  on the wall of the embedded foundation are described in 

terms of displacement vectors, { }Vr  and { }Vz .  

  The interaction forces { }p ( { }= P M Rx y top

T/ 0 ) from the super-structure causes the 

inertia interaction motions { }u r
top

( { }= V Vr z top
T ) in the frequency domain as: 
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


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is the flexibility (compliance) at the top of the foundation, with s i= ⋅ω  and i = −1 , 
and ω  is the excitement circular frequency. 

This program provides the following pieces of information in the frequency domain: 
1)  Free-field surface ground motion { }u f  subjected to a sinusoidal shake given to 

its bedrock 
2)  Foundation motions { } { }u uf s+  caused by the free-field ground motion { }u f . 

3)  Kinematic displacement factor Te  for evaluation of the effective input motion 

( )u uf r
top

+  at the top end of the foundation: ( )u uf r
top

+ = T ue
f

surface⋅ . (2.4) 

4)  Flexibility components Hxx , Hxz  (= Hzx ) and Hzz  as well as stiffness 
components Sxx , Sxz  and Szz  at the head of the foundation 

 
3. FORMULATION 
3.1 Soils 
In TLEM, an infinite soil medium surrounding a pile foundation is described by using 
the Thin-Layered Element Method, a semi-analytical finite element method developed 
by Tajimi and Shimomura (1976). The major part of this section is, thus, an abridged 
translation of their original Japanese paper appeared in the Transaction of Architectural 
Institute of Japan, 243, 1976. 

The idealized soil-embedded foundation system is shown in Fig. 3.1. In the idealized 
system, (1) the surrounding soil is divided into a number of homogeneous horizontal 
sub-layers holding (2) a circular column which is made of the foundation and (3) the soil 
beneath the bottom end of the foundation. (4) The mechanical features of the column 
(pile group) are described on the basis of the hypotheses whose description (“3.2 Piles 
Treated as a Single Upright Beam”) will follow this section, and the column has a 
perfect contact with the surrounding soil. (5) In each sub-layer, linear variation of 
displacement is assumed with respect to the depth, whereas, 3D equations of motion 
describe outwardly propagating wave in the radial direction.  
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Fig. 3.1  Soil-Structure model  

 
 
3-1 Motion of the Surrounding Soil 
Many wave motion problems regarding soil-circular embedded foundation systems are 
best described in terms of cylindrical coordinates. The governing equations are thus 
given as: 
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Lame’s constants λ  and G  are complex numbers whose imaginary parts describe 
internal damping of soil. The soil-foundation system is assumed to be excited in x 
direction (Fig. 3.1), and the displacement components of soil are described in terms of 
potential functions as: 
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0
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( ) ( )

( ) ( )

( )

( ) ( )

( ) ( )

( )

( )
( )
( )

   (3.3) 

in which, H rj
( ) ( )2 α  is the second kind Hankel function of order j.   

 
Substituting equations (3.2) and (3.3) into equation (3.1), one obtains: 

 α φ ϕ φ ϕ ρω φ ϕ2
2

2
2 0G G d

d z
( ) ( ) ( )+ − + − + =    (3.4) 

 ( )( ) ( ) ( ) ( )α λ φ ϕ φ ϕ α λ ρω φ ϕ2
2

2
22 0+ − − − + + − − =G G d

d z
G dW

d z  
(3.5) 

 ( ) ( ) ( )− + − + − + − =α λ φ ϕ α λ ρωG d
d z

GW G d W
d z

W2
2

2
2 0   (3.6) 

1

2

z

H

SV1

SV2  
Fig. 3.2  Soil slice 

 
Layer boundary forces-displacements relationship is obtained by using Galarkin’s 

method. First, surface tractions in p-direction on both boundaries ( j = 1 2, ) of a 
sub-layer with the thickness H are denoted by S jp  (Fig. 3.2). Unit nodal-point 
displacement causes the sub-layer to be deformed into a prescribed shape of N j . Thus, 
the equilibrium condition of virtual work is obtained by multiplying the equation of 
motion (equation (3.4), (3.5) or (3.6)) by N j  and integrating it over the entire extent of 
the element H as: 

 { } { }− = − =
−∫ N F dz K U sj p jp

T

H

H

jp2

2
0      (3.7) 

where, Fp  is the equation of motion, and 

 N
z H j
z H jj =

− =
+ =





1 2 1
1 2 2

/ / ( )
/ / ( )

 

 { }K jp = element stiffness matrix to be obtained, 

 { }U = nodal point (boundary surface) displacements. 
Just for preliminary arrangement, stress components are described in terms of potential 
functions: 
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∂
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W H r d
d z

W H r= +
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




 = −







 + +

















2 22

2
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2( ) ( )( ) ( )  

σ ∂
∂θ

∂
∂

φ α α ϕ α αθ
θ

z
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r
v v

z
G d

d z
W H r d

d z
W H r= +







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





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

















1
2 22

2
0

2( ) ( )( ) ( )  

( ) ( ) ( ) ( )σ λ ∂
∂

∂
∂

∂
∂

λα φ ϕ λ αθ
zz r

z z

r r
rv

v
r

v
z

G v
z

G dW
dz

H r= + +






 + = − + +





1 2 2 1
2( )  

              (3.8), (3.9), (3.10) 
Equations (3.8), (3.9) and (3.10) are rewritten in the following matrix form as: 
σ
σ
σ

α γ α γ α γ α γ

α γ α γ α γ α γ

α γ

σ
σ
σ

θ

zr

z

zz

H H H H

H H H H

H
















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

















1
2

0

0

0 0 2

2
2

0
2

2
2

0
2

2
2

0
2

2
2

0
2

1
2

1

2

3

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

~
~
~

















 

( ) ( ) ( ) ( )~ , ~ , ~σ φ ϕ α σ φ ϕ σ αλ φ ϕ λ1 2 3 2= − −





= + = − + +G d
dz

W G d
dz

G dW
dz

 

           (3.11), (3.12) 
From equation (3), displacements are also described in similar manner as: 

v
v
v

H H H H

H H H H

H W

r

z

θ

α γ α γ α γ α γ

α γ α γ α γ α γ

α γ

φ ϕ
φ ϕ
















=

− +

+ −



















−
+









1
2

0

0

0 0 2

2
2

0
2

2
2

0
2

2
2

0
2

2
2

0
2

1
2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )









         (3.13) 
It is noted that matrices in equations (3.11) and (3.13) are identical with each other, 
which fact eventually allows Galarkin’s method (equation (3.7)) to be applied to the 
transformed equations described in terms of the transformed traction ( )~ ~ ~σ σ σ1 2 3  
and the displacement  ( )φ ψ φ ψ− + W . The transformed tractions and the 
displacements are described on the layer boundaries as: 

( )

( )

( )

( )

( ) ( )

( ) ( )

~
~ ,

~
~ ,

~
~

σ
σ

φ ϕ α

φ ϕ α

σ
σ

φ ϕ

φ ϕ

σ
σ

αλ φ ϕ λ

αλ φ ϕ λ

11

21

1 1

2 2

12

22

1

2

13

23

1 1

2 2

2

2









 =

− −

− −



























 =

−

−



























 =

− − − +

− + +









G

d
dz

W

d
dz

W
G

d
dz
d
dz

G dW
dz

G dW
dz










         (3.14) 
The transformed displacements within the sub-layer are described in terms of prescribed 
shape functions N1  and N 2  as: 

 
φ
ϕ

φ
ϕ

φ
ϕ

W
N

W
N

W
N z

H
N z

H
















=
















+

















= − = +1

1

1

1

2

2

2

2

1 2
1
2

1
2

, ,    (3.15) 

As an example, Galarkin’s method is applied to equation (3.5) in which equation (3.15) 
is substituted. Equation (3.7) thus is written for j = 1 as: 
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( ) ( ) ( ) ( )
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H

H
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1
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1 1
2

2 2 1 1 2 2

2 1
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1 1
2

2 2 1

2
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2
6

2 3 6

−∫ = + − + + − + − − −

+ + − − − − − + −

α λ φ ϕ α λ φ ϕ φ ϕ φ ϕ

α λ ρω φ ϕ ρω φ ϕ φ ϕ
 

         (3.16) 
A similar expression is obtained for j = 2 . From equation (3.14), these expressions for 
j = 1 and j = 2  are arranged in the following matrix form as: 
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( ) ( )
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α λ
φ ϕ
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φ ϕ
φ ϕ
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
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
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
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W

H
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 (3.17) 

Similarly, one obtains the following equation from equation (3.4): 
 [ ] [ ] [ ]( ){ } { }α ω φ ϕ σ2 2

2A G Ms
e

s
e e e+ − + = ~    (3.18) 

where, 
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s
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e e

=




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
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
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
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
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+
+











6
2 1
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1 1
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1
6

2 1
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2 2

,

,ρ φ ϕ
φ ϕ
φ ϕ

 

The above matrices with superscript e imply that they are expressions for a particular 
sub-layer element. Using similar notations, transformed equations (3.5) and (3.6) are 
written as: 

[ ] [ ] [ ]( ){ } [ ]( ) { } { }α ω φ ϕ α σ2 2
1A G M B Wp

e
s

e e e e T e+ − − − = ~  
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
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
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~  

           (3.19), (3.20) 
where, 
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The global equation of motion is then assembled with all element matrices provided. In 
this procedure, the layer-boundary displacements are arranged in the following order as: 
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{ } ( )

{ } ( )

φ ϕ φ ϕ φ ϕ φ ϕ

φ ϕ φ ϕ φ ϕ φ ϕ
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
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, , ,

, ,,

L

L

L

N N
T

N N
T

N
T

W W W W

    (3.21) 

in which, the subscripts, 1, 2, ... , N denote the numbers of layer boundaries starting 
from the ground surface. The displacement vectors are rewritten by using simpler 
notations as: 
 { } { } { } { } { } { }φ ϕ φ ϕ− = + = =X Y W Z, ,    (3.22) 
The global equations of motion are thus obtained by putting element matrices with the 
superscript e at the proper positions in the global matrix (Fig. 3.3) as: 

 

[ ] [ ] [ ]( ){ }
[ ] [ ] [ ]( ){ } [ ] { }
[ ]{ } [ ] [ ] [ ]( ){ }

β ω

α ω α

α α ω

2 2
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0

0

0

A G M Y

A G M X B Z

B X A G M Z

s s

p s
T

s p

+ − =

+ − − =

− + + − =

   (3.23), (3.24), (3.25) 

 

 
Fig. 3.3 Global matrix 

 
The above equations are solved in the manner of an eigen-value problem, and it is noted 
that equation (3.23), of which eigen values are denoted by β , is completely 
independent of the mutually coupled equations (3.24) and (3.25) having the common 
eigen-values of α . Elimination of { }Z  in equations (24) and (25) leads to: 
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−

     (3.26), (3.27) 

A similar expression is also obtained by eliminating { }X : 
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Equation (3.26) is written in the following 2N×2N characteristic equations: 
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    (3.29) 

where, { } { }$X X= α 2  

Since equation (3.29) contains complex Lame’s constants, 2N complex squared 
eigen-values, α 2 , are obtained. This means that there exist total 4N solutions of α . 
The condition that the soil displacement converges on zero at r → ∞  requires that the 
appropriate eigen-values must have negative imaginary parts. Thus, imposing this 
requirement yields the number of appropriate eigen-values to be cut by half (2N). 
 
Boundary Conditions on the Upright Cylindrical Hollow 
A foundation with a circular cross-section is assumed to be embedded upright in the 
stratified soil. Thus, the force-displacement relationship is to be obtained on the wall of 
the cylindrical hollow. Since the displacement components on the wall are proportional 
to either cosθ  or sinθ , displacements are described in terms of ( )v v vr zθ . Thus 
displacement vectors, { }Vr , { }Vθ , { }Vz , used in this formulation contain layer 
boundary displacement components. These displacement vectors are expressed in terms 
of the eigen-vectors of the stratified soil as: 
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   (3.30) 

where, { }X α  and { }Z α  are the mutually coupled eigen-vectors corresponding to an 
eigen-value α , and the eigen-vector { }Y β  corresponds to an eigen-value β . The 

effective contributions of these eigen-vectors are denoted by qα  and qβ , respectively. 
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A modal matrix is defined as: 
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      (3.31) 

where, the dimensions of matrices [ ]X  and [ ]Z are N N× 2 , whereas that of [ ]Z  is 
N N× . Equation (3.30) is further simplified by virtue of the mathematical 
conveniences of Hankel functions, which are described as: 

 

( ) ( )
( )

( ) ( )
( )

H R H R
H R

r

H R H R
H R

R

f

2
2

0 0
2

0

1
2

0

0

2
2

0 0
2

0

1
2

0

0

2

2

( ) ( )

( )

( ) ( )

( )

α α
α

α

α α
α

α

α

+
=

−
=
















      (3.32) 
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Introducing the newly defined parameters shown above, equation (3.30) is rewritten in 
the following matrix form as: 
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It is assumed that the cross-section of the cylindrical hollow is kept completely circle. 
This assumption requires the following equation to be satisfied. 
 { } { }V Vr + =θ 0       (3.34) 
Substituting equation (3.34) in equation (3.33) yields: 
 [ ][ ]{ } [ ][ ]{ }X f q Y f qO

O
O

O1 1 0+ + + =α α β β
~ ~    (3.35) 

From equation (35), { }~qα is described in terms of { }~qβ  as: 

 { } [ ] [ ] [ ] [ ]{ } [ ]{ }~ ~ ~q f Y X f q E qβ β β α α= − + + =
− −O

O
O

O1 1
1 1   (3.36) 

where, matrix [ ]E  has the dimension of N N× 2 . Equation (3.33) is degenerated into 
2 2N N×  matrix form as: 
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Tractions ( )p p pr zθ  on the wall of the cylindrical cavity are expressed as: 
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From equation (3.13), one can describe the tractions in terms of the transformed 
displacements φ ψ− , φ ψ+  and W  as: 
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Given the above equations, resultant lateral force Px  in x direction and the moment 
M y  around y axis per unit depth are obtained as: 
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The sub-layer boundary forces are then obtained by multiplying equations (3.42)-(3.44) 
by the prescribed shape of displacement N j  and integrating it over the entire thickness 
of the sub-layer. 
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The obtained force-transformed displacement relationship is written in the following 
element matrix form as: 
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These element matrices are then put in the proper locations in the global matrix. 
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These equations are rewritten in the following matrix form as: 
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          (3.46) 
From equations (3.37) and (3.46), the following layer boundary force-displacement 
relation is finally obtained. 
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3.2 Piles Treated as a Single Upright Beam 
Piles, grouped beneath a superstructure, interact with the surrounding soil during an 
earthquake, and the dynamic pile-soil-pile interaction often affects the motion of the 
superstructure to a considerable extent. Straight-forward evaluation of the pile-soil-pile 
interaction, however, is cumbersome especially in dealing with tens or hundreds piles 
groped together. Hence some simplified approach for the evaluation of such dynamic 
pile-soil-pile interaction is very much desirable for the purpose of treating the dynamic 
behavior of an entire soil-foundation-structure system. A number of researches have 
been carried out with the objective to develop such simplified approaches. These 
attempts include the Ring-Pile method (Takemiya, 1986) and Closely-Spaced-Plates 
model (Ohira and Tazo, 1985). In these methods, respectively, piles with the soil caught 
among them are re-grouped into several concentric cylinders (piles arranged in 
concentric circles) and soil-pile-striped upright plates, allowing close evaluation of 
interaction effects to be made with less time and trouble. This chapter presents further 
simplified approach in which a group of piles is viewed as a single equivalent upright 
beam.  
   
Stiffness matrix of equivalent single beam 
The soil and np  piles system is divided into nL  horizontal slices as shown in Fig. 3.4. 
The following assumptions are tentatively adopted herein to derive the stiffness matrix 
of the equivalent single beam: 
(1)  Pile elements within a horizontal soil slice are deformed all at once keeping their 

intervals constant, and the soil caught among piles moves in a body with the piles. 
The cross-section, Ag , of the equivalent single upright beam, thus, comprises both 
the firmly joined piles and the soil. 

(2)  Frictional effects due to bending of piles (external moments on each pile from soil) 
are ignored. 

(3)  Top ends of the piles are fixed to a rigid cap. 
(4)  All upper or lower ends of the sliced pile elements arranged on the cut-end of a soil 

slice remain on one plane (Note this assumption does not necessarily mean that 
each pile’s cross-section remains in parallel with this plane. See Fig. 3.4(b)). 

 



96   APPENDIX “TLEM” (Ver. 1.2), Thin-Layered-Element Method 

 

remain on one plane

nL
hj

wj
j

R0 w1

np piles

Ag

centroid

 
 

Fig. 3.4  Assumption for evaluation of equivalent single beam 
 
 
With assumptions (1), (2) and (3), lateral external forces { }Px  are described in terms 
of lateral displacements { }u x  and anti-symmetric vertical motion of the cap w1  as: 
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where, R0  is the radius of the equivalent single beam, and is assumed to be identical to 
the radius of a circle with the same area as the cross-section AG  that includes all the 
grouped piles enclosed by the broken line in Fig. 3.4a, and 
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with  EI n E Ip p p p= ×    ( E Ip p = bending stiffness of a single pile). 
Moment M1  at the top ends of rigidly capped piles due to the lateral displacements 
{ }u x  is expressed as:  
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1
1 1
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= + ⋅− −1st row of matrix D L u ,   (3.49c) 

where, D1 1
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,
−  = upper-left corner component of the matrix, [ ]D −1 . 

Assumption (4) implies that the overall anti-symmetric rocking motion of a pile group 
is controlled by axial motions of the piles. In other word, the external moments on the 
overall soil-pile system from its surrounding soil are eventually sustained by the piles 
that experience alternate push and pull in their axes. External moments due to the 
anti-symmetric vertical motions { }w  are described as: 
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where, EI G  is the bending stiffness of the equivalent single upright beam. This EI G  
is evaluated following the same procedure as that used for the evaluation of bending 
stiffness of a reinforced concrete beam. Namely, EI G  is assumed to be equal to the 
sum of the Young’s-modulus-weighted products of all the elementary areas times their 
distances squared from the centroid of the cross-section AG  (Fig. 2.4a).  
  Given equations (3.48)-(3.51), the global stiffness matrix of the equivalent single 
beam is finally expressed as: 
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The global equations of motion for the entire upright single beam are thus obtained as: 
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Finally, the equations of motion for the entire soil-foundation system are obtained by 
combining equation (3.47) with the above equations of the upright column’s motion 
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Given the motions of the upright column from equation (3.53), displacements at an 
arbitrary point ( r,θ ) in the surrounding soil are obtained by solving the following 

equation: 
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where, 
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    (3.55) 

hβ  and hβ * are obtained by simply replacing α  in equations (3.55) with β . 

 
 
Pile Deflection Caused by the Motion of the Surrounding Soil 

It is assumed that a virtual soil foundation having the same size and shape of an actual 
foundation is embedded in the soil, and the response of the virtual soil foundation is 
obviously identical to the free-field ground motion. We now consider an actual 
foundation whose stiffness and mass are cut down by the quantities that offset this 
virtual soil foundation. This procedure leads both the stiffness and mass matrices to be 
modified as:  
 [ ] [ ]F FH H⇒ * , [ ] [ ]M MH H⇒ *  
The change in [ ]FH , however, turns out to be extremely small in many cases 
encountered, and can be ignored. The presence of this foundation with [ ]FH  ([ ]FH *  
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correctly) and [ ]M H *  then causes the ground motion { }Vr  at the soil-foundation 
interface to deviate from the free-field ground motion { }Vr * , and the equations of 
motion are written in the following form as: 
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where,  [ ] [ ][ ]R R D JH H H= −π 0
1  (See equation (3.47)) 
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4. Data Files 
  
TLEM1.2 requires four input data files to be provided. Among these files, 
“equi_stiff.dat” stores parameters describing a single upright beam which approximates 
closely the behaviors of a pile group. A program, “pile_param.exe”, saves a lot of 
trouble creating parameters for “equi_stiff.dat”. This program requires (1) LAYER.dat 
(5) ARRANGE.dat and (6) PILEPRM.dat. 
  After running TLEM1.2, 14 output data files are created on the same directory where 
TLEM1.2 exsits. 
  

pile_param.exe 

LAYER.dat ARRANGE.dat PILEPRM.dat 

equi_stiff.dat 

TLEM 1.2 

(1)  vib_mode.dat 
(2)  eff_motion.dat 
(3)  deflec_Px.dat,  (4)  deflec_M.dat,  (5)  deflec_Vx  (6)  deflec_Vx 
(7)  deflec_Fr.dat , (8)  react_Px.dat , (9)  react_M.dat   (10)  react_Vx.dat 

(14)  top_flx.dat 
(15)  stf_rock.dat 
(16)  space_dsp.dat 

(1) (5) (6) 

FREQ.dat (2) SDISP.dat (3) (4) 

(11) react_Vz.dat (12) react_Fr.dat (13) top_stf.dat 
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4.1 Input data files 
(1) LAYER.dat 
This data file provides the parameters that describe mechanical features of soil slices. 

where, 
<-1-> (I5): Number of soil slices, 
<-2-> (F10.7): Real part of λ  (Lame’s constant: tf/m2) for each soil slice,  
<-3-> (F10.7): Imaginary part of λ  (Lame’s constant: tf/m2) for each soil slice, 
<-4-> (F10.7): Real part of µ  (shear modulus: tf/m2) for each soil slice, 
<-5-> (F10.7): Imaginary part of µ  (shear modulus: tf/m2) for each soil slice, 
<-6-> (F10.7): density of µ  (shear modulus: tf/m2) for each soil slice, 
<-7-> (F10.7): depth of slice boundary (m) 
 
(2) FREQ.dat 
TLEM provides solutions in the frequency domain. The following index parameters 
must be provided: 
<-1-><-2-><---3----><---4----> 
   63   14       1.0       1.0 
where, 
<-1-> (I5): Number of stepwize increases of circular frequency 
<-2-> (I5): Some large data files (space_dsp.dat etc.) are created at this step of increasing 
frequency 
<-3-> (F10.7): Initial value of circular frequency 
<-4-> (F10.7): Increment of circular frequency 
 
(3) SDISP.dat 
This data file "SDISP.dat" provides necessary parameters for storing spatial variation of 
soil displacements. 
 
<-1-><-2-><-3-><---4----><---5----> 
    1    4   10     1.000     0.100 

<-1-> 
   10 
<---2----><---3----><---4----><---5----><---6----><---7----> 
    4.80e4    4.80e3    9.79e2    9.79e1     0.153       2.0 
    4.80e4    4.80e3    9.79e2    9.79e1     0.153       4.0 
    4.80e4    4.80e3    9.79e2    9.79e1     0.153       6.0 
    4.80e4    4.80e3    9.79e2    9.79e1     0.153       8.0 
    4.80e4    4.80e3    9.79e2    9.79e1     0.153      10.0 
    4.80e4    4.80e3    9.79e2    9.79e1     0.153      12.0 
    4.80e4    4.80e3    9.79e2    9.79e1     0.153      14.0 
    4.80e4    4.80e3    9.79e2    9.79e1     0.153      16.0 
    4.80e4    4.80e3    9.79e2    9.79e1     0.153      18.0 
    4.80e4    4.80e3    9.79e2    9.79e1     0.153      20.0 
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where, 
<-1-> (I5): IDR : direction of displacement component (IDR=1:radial, 2:tangential, 3:vertical) 
<-2-> (I5): KF :  direction of applied force or displacement 
                 KF=1: Lateral unit force is applied 
                 KF=2: Moment/R0 (=1.0) is applied 
                 KF=3: Lateral unit displacement is given keeping rotation zero 
                 KF=4: Unit rotation is given keeping lateral displacement zero  
<-3-> (I5): Number of stepwise increases of radial diatance 
<-4-> (F10.7): Initial value of radial distance r R/ 0  
<-5-> (F10.7): Increment of radial distance ∆r R/ 0  
 
(4) Equi_stiff.dat 
As has been explained in Section 3.2, a pile group is treated as a single upright beam 
described in term of representative parameters, R0 , EI p  and EI G  (equations (3.49b) 
and (3.51)). These parameters for all sliced beam elements are provided by a data file 
“equi_stiff.dat”. This data file also provides the masses of the sliced elements which 
are used in the mass matrix [ ]M H  
 
<---1----> 
  .288E+01 
<---2----><---3----><---4----><---5----><---6----> 
  .245E+06  .000E+00  .160E+08  .000E+00  .350E+01 
  .245E+06  .000E+00  .160E+08  .000E+00  .350E+01 
  .245E+06  .000E+00  .160E+08  .000E+00  .350E+01 
  .245E+06  .000E+00  .160E+08  .000E+00  .350E+01 
  .245E+06  .000E+00  .160E+08  .000E+00  .350E+01 
  .245E+06  .000E+00  .160E+08  .000E+00  .350E+01 
  .245E+06  .000E+00  .160E+08  .000E+00  .350E+01 
  .245E+06  .000E+00  .160E+08  .000E+00  .350E+01 
  .245E+06  .000E+00  .160E+08  .000E+00  .350E+01 
  .245E+06  .000E+00  .160E+08  .000E+00  .350E+01 
where, 
<-1-> (F10.7): Radius of the pile-group-equivalent single upright beam, R0  (m). 
<-2-> (F10.7): Real part of EI p (tf m2) for each sliced element. 

<-3-> (F10.7): Imaginary part of EI p (tf m2) for each sliced element. 

<-4-> (F10.7): Real part of EI G (tf m2) for each sliced element. 
<-5-> (F10.7): Imaginary part of EI G (tf m2) for each sliced element. 
<-6-> (F10.7): mass of each sliced element (tf s2/m). 
 
It actually takes time to obtain above mentioned parameters for pile groups. A program, 
“pile_param.exe”, allows preparation of “equi_stiff.dat” to be made with less time and 
effort. This program requires (1) LAYER.dat and the following input data files: 
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(5) ARRANGE.dat 
This data file “ARRANGE.dat” provides arrangement of piles grouped beneath a rigid 
pile cap. 
<-1-> 
   16 
<---2----><---3----> 
       0.0       0.0 
       1.5       0.0 
       3.0       0.0 
       4.5       0.0 
       0.0       1.5 
       1.5       1.5 
       3.0       1.5 
       4.5       1.5 
       0.0       3.0 
       1.5       3.0 
       3.0       3.0 
       4.5       3.0 
       0.0       4.5 
       1.5       4.5 
       3.0       4.5 
       4.5       4.5 

where, 
<-1-> (I5): number of piles 
<-2-> (F10.7): x coordinate  (m)  (NOTE: piles are excited in x direction). 
<-3-> (F10.7): y coordinate  (m). 
 
(5) PILEPRM.dat 
This data file “PILEPRM.dat” provides mechanical properties of sliced pile elements. 
<---1----><---2----><---3----><---4----><---5----> 
    0.3000    0.2910     2.1e7       0.0     0.801 
    0.3000    0.2910     2.1e7       0.0     0.801 
    0.3000    0.2910     2.1e7       0.0     0.801 
    0.3000    0.2910     2.1e7       0.0     0.801 
    0.3000    0.2910     2.1e7       0.0     0.801 
    0.3000    0.2910     2.1e7       0.0     0.801 
    0.3000    0.2910     2.1e7       0.0     0.801 
    0.3000    0.2910     2.1e7       0.0     0.801 
    0.3000    0.2910     2.1e7       0.0     0.801 
    0.3000    0.2910     2.1e7       0.0     0.801 
    0.3000    0.2910     2.1e7       0.0     0.801 
    0.3000    0.2910     2.1e7       0.0     0.801 
    0.3000    0.2910     2.1e7       0.0     0.801 
    0.3000    0.2910     2.1e7       0.0     0.801 
    0.3000    0.2910     2.1e7       0.0     0.801 

where, 
<-1-> (F10.7): outer radius of sliced pile element (m) 
<-2-> (F10.7): inner radius of sliced pile element (m) 
<-3-> and <-4-> (F10.7): Real and imaginary parts of Young’s modulus of sliced pile 
element (tf/m2) 
<-5-> (F10.7): density of pile (tf/m3 s2/m) 
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4.2 Output data files 
 
(1) vib_mode.dat 
This data file, “vib_mode.dat”, stores the deflection of pile group caused by free-field 
ground motion ( sf

rV +  and f
rV  in equation (3.56)). 

where, 
<-1-> (E15.7): circular frequency 
<-2-> (E15.7): depth  (m) 
<-3-> (E15.7): real part of deformation of pile group, sf

rV +   (m) 

<-4-> (E15.7): imaginary part of deformation of pile group, sf
rV +   (m) 

<-5-> (E15.7): real part of free-field ground motion, Vr
f   (m) 

<-6-> (E15.7): imaginary part of free-field ground motion, Vr
f   (m) 

 
(2) eff_motion.dat 
This data file “eff_motion.dat” stores transfer functions (kinematic displacement factor 
Te x,  and Te z, ) for evaluation of effective input ground motion. 

<------1------><------2------><------3------><------4------><------5------><------6------> 

      .1000E+01      .0000E+00      .1032E+01     -.3248E-02      .1032E+01     -.3249E-02 

      .1000E+01      .2000E+01      .1031E+01     -.3209E-02      .1031E+01     -.3216E-02 

      .1000E+01      .4000E+01      .1030E+01     -.3108E-02      .1030E+01     -.3118E-02 

      .1000E+01      .6000E+01      .1029E+01     -.2944E-02      .1029E+01     -.2953E-02 

      .1000E+01      .8000E+01      .1026E+01     -.2713E-02      .1027E+01     -.2723E-02 

      .1000E+01      .1000E+02      .1024E+01     -.2416E-02      .1024E+01     -.2428E-02 

      .1000E+01      .1200E+02      .1020E+01     -.2051E-02      .1020E+01     -.2068E-02 

      .1000E+01      .1400E+02      .1016E+01     -.1619E-02      .1016E+01     -.1644E-02 

      .1000E+01      .1600E+02      .1011E+01     -.1124E-02      .1011E+01     -.1155E-02 

      .1000E+01      .1800E+02      .1006E+01     -.5770E-03      .1006E+01     -.6039E-03 

      .2000E+01      .0000E+00      .1137E+01     -.1530E-01      .1137E+01     -.1532E-01 

      .2000E+01      .2000E+01      .1136E+01     -.1512E-01      .1136E+01     -.1516E-01 

      .2000E+01      .4000E+01      .1131E+01     -.1463E-01      .1132E+01     -.1468E-01 

      .2000E+01      .6000E+01      .1124E+01     -.1383E-01      .1125E+01     -.1388E-01 

      .2000E+01      .8000E+01      .1115E+01     -.1273E-01      .1115E+01     -.1278E-01 

      .2000E+01      .1000E+02      .1102E+01     -.1131E-01      .1102E+01     -.1136E-01 

      .2000E+01      .1200E+02      .1087E+01     -.9571E-02      .1087E+01     -.9646E-02 

      .2000E+01      .1400E+02      .1069E+01     -.7534E-02      .1069E+01     -.7638E-02 

      .2000E+01      .1600E+02      .1048E+01     -.5216E-02      .1049E+01     -.5347E-02 

      .2000E+01      .1800E+02      .1025E+01     -.2673E-02      .1025E+01     -.2783E-02 
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where, 
<-1-> (E15.7): circular frequency 
<-2-> (E15.7)  and 
<-3-> (E15.7): Real and imaginary parts of kinematic displacement factor Te x,  for 
evaluation of the effective input sway motion at the top end of the foundation: 
 ( )T V V Ve x r

f
r

r

top r
f

surface, /= +   
<-4-> (E15.7)  and 
<-5-> (E15.7): Real and imaginary parts of kinematic displacement factor Te z,  for 
evaluation of the effective input rocking motion at the top end of the foundation: 

 ( ) ( ) ( ) ( )T V V V V Ve x z
f

z
r

top r
f

surface z
r

top r
f

surface, / /= + =   
 
(3) deflec_Px.dat, (4) deflec_M.dat, (5) deflec_Vx, (6) deflec_Vx and (7) deflec_Fr 
Data files “deflec_Px.dat”, “deflec_M.dat”, “deflec_Vx.dat” and “deflec_Vz.dat store 
vibration modes of a pile group subjected to an unit lateral force, unit moment, 
M Ry / 0 =1, unit displacements Vx =1 and Vz =1, respectively, applied to its pile cap. ” 

Data file deflec_Fr.dat stores relative displacements between the pile group and 
far-field soil 

<------1------><------2------><------3------><------4------><------5------> 

      .1000E+01      .1000E+01      .1284E-05      .9019E-04     -.1188E-04 

      .2000E+01      .9999E+00      .9613E-05      .3612E-03     -.4753E-04 

      .3000E+01      .9997E+00      .3939E-04      .8144E-03     -.1070E-03 

      .4000E+01      .9993E+00      .1199E-03      .1452E-02     -.1905E-03 

      .5000E+01      .9985E+00      .3214E-03      .2279E-02     -.2986E-03 

      .6000E+01      .9968E+00      .1083E-02      .3305E-02     -.4383E-03 

      .7000E+01      .9963E+00      .3297E-02      .4498E-02     -.6296E-03 

      .8000E+01      .9957E+00      .4280E-02      .5872E-02     -.8202E-03 

      .9000E+01      .9943E+00      .5212E-02      .7442E-02     -.1027E-02 

      .1000E+02      .9919E+00      .6182E-02      .9201E-02     -.1242E-02 

 

<------1------><------2------><------3------><------4------><------5------><------6------> 

      .1000E+01      .0000E+00      .3654E-04     -.3159E-05      .1621E-05     -.1724E-06 

      .1000E+01      .2000E+01      .2886E-04     -.2751E-05      .1310E-05     -.1549E-06 

      .1000E+01      .4000E+01      .1830E-04     -.2004E-05      .1095E-05     -.1364E-06 

      .1000E+01      .6000E+01      .1083E-04     -.1282E-05      .9179E-06     -.1181E-06 

      .1000E+01      .8000E+01      .6501E-05     -.7626E-06      .7597E-06     -.1004E-06 

      .1000E+01      .1000E+02      .4096E-05     -.4471E-06      .6129E-06     -.8314E-07 

      .1000E+01      .1200E+02      .2666E-05     -.2682E-06      .4750E-06     -.6616E-07 

      .1000E+01      .1400E+02      .1699E-05     -.1633E-06      .3451E-06     -.4939E-07 

      .1000E+01      .1600E+02      .9818E-06     -.9438E-07      .2228E-06     -.3278E-07 

      .1000E+01      .1800E+02      .4353E-06     -.4315E-07      .1078E-06     -.1630E-07 

      .2000E+01      .0000E+00      .3693E-04     -.3239E-05      .1618E-05     -.1722E-06 
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where, 
<-1-> (E15.7): circular frequency 
<-2-> (E15.7): depth  (m) 
<-3-> (E15.7): real part of sway motion of pile group Vr   (m) 
<-4-> (E15.7): imaginary part of sway motion of pile group Vr   (m) 
<-5-> (E15.7): real part of vertical motion Vz   (m) 
<-6-> (E15.7): imaginary part of vertical motion Vz   (m) 
 
(8) react_Px.dat, (9) react_M.dat, (10) react_Vx.dat, (11) react_Vz.dat and  
(12) react_Fr.dat 
Data files “react_Px.dat”, “react_M.dat”, “react_Vx.dat” and “react_Vz.dat” store 
reaction forces from the soil surrounding a pile group subjected to an unit lateral force, 
unit moment, M Ry / 0 =1, unit displacements Vr =1 and Vz =1, respectively, applied to 
its pile cap. Data file react_Fr.dat stores kinematic interaction forces. 

where, 
<-1-> (E15.7): circular frequency 
<-2-> (E15.7): depth (m) 
<-3-> (E15.7): real part of lateral reaction Px   (tf) 
<-4-> (E15.7): imaginary part of lateral reaction Px   (tf) 
<-5-> (E15.7): real part of restoring moment M Ry / 0   (tf) 

<-6-> (E15.7): imaginary part of restoring moment M Ry / 0   (tf) 

 
(13) top_stf.dat 
This data file “top_stf.dat” stores pile cap stiffness Sxx , Sxz  (= Szx ) and Szz . 

<------1------><------2------><------3------><------4------><------5------><------6------> 

      .1000E+01      .0000E+00      .4159E+00      .1016E-01      .1140E+00      .2307E-02 

      .1000E+01      .2000E+01      .4517E+00      .2759E-02      .9328E-01      .9282E-03 

      .1000E+01      .4000E+01      .1530E+00     -.7822E-02      .3651E-01     -.2419E-03 

      .1000E+01      .6000E+01      .2252E-01     -.5780E-02      .1813E-01     -.5195E-03 

      .1000E+01      .8000E+01     -.1342E-01     -.1746E-02      .1098E-01     -.4298E-03 

      .1000E+01      .1000E+02     -.1479E-01      .4071E-03      .8540E-02     -.2868E-03 

      .1000E+01      .1200E+02     -.8879E-02      .8773E-03      .7752E-02     -.1964E-03 

      .1000E+01      .1400E+02     -.3916E-02      .6195E-03      .7357E-02     -.1525E-03 

      .1000E+01      .1600E+02     -.4989E-03      .2450E-03      .6935E-02     -.1331E-03 

      .1000E+01      .1800E+02      .2493E-02      .7824E-05      .7039E-02     -.1674E-03 

      .2000E+01      .0000E+00      .4160E+00      .1015E-01      .1141E+00      .2302E-02 

      .2000E+01      .2000E+01      .4519E+00      .2752E-02      .9342E-01      .9130E-03 

      .2000E+01      .4000E+01      .1532E+00     -.7835E-02      .3673E-01     -.2679E-03 

      .2000E+01      .6000E+01      .2267E-01     -.5796E-02      .1841E-01     -.5526E-03 

      .2000E+01      .8000E+01     -.1331E-01     -.1761E-02      .1128E-01     -.4670E-03 

      .2000E+01      .1000E+02     -.1473E-01      .3959E-03      .8859E-02     -.3265E-03 

      .2000E+01      .1200E+02     -.8839E-02      .8703E-03      .8086E-02     -.2377E-03 
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where, 
<-1-> (E15.7): circular frequency 
<-2-> (E15.7): real part of Sxx  (tf/m) 
<-3-> (E15.7): imaginary part of Sxx  (tf/m) 
<-4-> (E15.7): real part of Sxz  (= Szx ) (tf/m) 
<-5-> (E15.7): imaginary part of Sxz  (= Szx ) (tf/m) 
<-6-> (E15.7): real part of Szz  (tf/m) 
<-7-> (E15.7): imaginary part of Szz  (tf/m) 
 
(14) top_flx.dat 
This data file “top_flx.dat” stores pile cap flexibility Hxx , Hxz  (= Hzx ) and Hzz . 

where, 
<-1-> (E15.7): circular frequency 
<-2-> (E15.7): real part of Hxx   (m/tf) 
<-3-> (E15.7): imaginary part of Hxx   (m/tf) 
<-4-> (E15.7): real part of Hxz  (= Hzx )  (m/tf) 
<-5-> (E15.7): imaginary part of Hxz  (= Hzx )  (m/tf) 
<-6-> (E15.7): real part of Hzz   (m/tf) 
<-7-> (E15.7): imaginary part of Hzz   (m/tf) 

<-----1------><------2------><------3------><------4------><------5------><------6------><------7------> 

      .1000E+01      .2744E+05      .2343E+04     -.6224E+04     -.8212E+01      .1400E+06      .2949E+04 

      .2000E+01      .2714E+05      .2352E+04     -.6141E+04     -.1584E+02      .1399E+06      .2954E+04 

      .3000E+01      .2660E+05      .2375E+04     -.5989E+04     -.3131E+02      .1397E+06      .2963E+04 

      .4000E+01      .2572E+05      .2429E+04     -.5739E+04     -.6209E+02      .1394E+06      .2980E+04 

      .5000E+01      .2425E+05      .2592E+04     -.5314E+04     -.1365E+03      .1391E+06      .3016E+04 

      .6000E+01      .2127E+05      .3625E+04     -.4439E+04     -.5057E+03      .1385E+06      .3153E+04 

      .7000E+01      .2079E+05      .8581E+04     -.4403E+04     -.2051E+04      .1381E+06      .3648E+04 

      .8000E+01      .2239E+05      .1064E+05     -.4966E+04     -.2682E+04      .1378E+06      .3863E+04 

      .9000E+01      .2362E+05      .1186E+05     -.5410E+04     -.3072E+04      .1374E+06      .4031E+04 

      .1000E+02      .2467E+05      .1270E+05     -.5812E+04     -.3375E+04      .1368E+06      .4216E+04 

 

<------1------><------2------><------3------><------4------><------5------><------6------><------7------> 

      .1000E+01      .3654E-04     -.3159E-05      .1621E-05     -.1724E-06      .7211E-05     -.1595E-06 

      .2000E+01      .3693E-04     -.3239E-05      .1618E-05     -.1722E-06      .7216E-05     -.1597E-06 

      .3000E+01      .3766E-04     -.3400E-05      .1611E-05     -.1715E-06      .7223E-05     -.1602E-06 

      .4000E+01      .3889E-04     -.3708E-05      .1599E-05     -.1694E-06      .7234E-05     -.1609E-06 

      .5000E+01      .4111E-04     -.4422E-05      .1572E-05     -.1627E-06      .7248E-05     -.1619E-06 

      .6000E+01      .4600E-04     -.7828E-05      .1500E-05     -.1172E-06      .7266E-05     -.1637E-06 

      .7000E+01      .4143E-04     -.1694E-04      .1574E-05      .3389E-07      .7287E-05     -.1680E-06 

      .8000E+01      .3681E-04     -.1729E-04      .1664E-05      .4659E-07      .7311E-05     -.1709E-06 

      .9000E+01      .3422E-04     -.1695E-04      .1728E-05      .4720E-07      .7342E-05     -.1750E-06 
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(15) stf_rock.dat 
This data file “stf_rock.dat” stores restoring moment for a particular case of a rigid 
massless foundation rocking on a bedrock. 

where, 
<-1-> (E15.7): circular frequency 
<-2-> (E15.7): real part of restoring moment M Ry / 0   (tf) 

<-3-> (E15.7): imaginary part of restoring moment M Ry / 0   (tf) 

 
(16) space_dsp.dat 
This data file “space_dsp.dat” stores  spatial variation of soil displacements. As has 
been mentioned, "SDISP.dat" provides the following necessary parameters for storing 
spatial variation of soil displacements. 
<1> IDR : direction of displacement component (Vr  (IDR=1), Vθ  (IDR=2) or Vz  (IDR=3)) 
<2> KF :  direction of applied force or displacement 
                 KF=1: Lateral unit force is applied 
                 KF=2: Moment/R0 (=1.0) is applied 
                 KF=3: Lateral unit displacement is given keeping rotation zero 
                 KF=4: Unit rotation is given keeping lateral displacement zero  
<3> (I5): Number of stepwise increases of radial diatance 
<4> (F10.7): Initial value of radial distance r R/ 0  
<5> (F10.7): Increment of radial distance ∆r R/ 0  

<------1------><------2------><------3------> 
      .1000E+01      .1631E+08      .1642E+07 
      .2000E+01      .1600E+08      .1643E+07 
      .3000E+01      .1543E+08      .1649E+07 
      .4000E+01      .1455E+08      .1673E+07 
      .5000E+01      .1316E+08      .1766E+07 
      .6000E+01      .1059E+08      .2411E+07 
      .7000E+01      .9192E+07      .5942E+07 
      .8000E+01      .9463E+07      .8001E+07 
      .9000E+01      .9607E+07      .9515E+07 
      .1000E+02      .9640E+07      .1082E+08 
 

<------1------><------2------><------3------><------4------> 
      .2880E+01      .0000E+00     -.1348E-15      .5787E-17 
      .2880E+01      .2000E+01     -.3404E+00      .4228E-01 
      .2880E+01      .4000E+01     -.3105E+00      .1051E+00 
      .2880E+01      .6000E+01     -.2018E+00      .1482E+00 
      .2880E+01      .8000E+01     -.1130E+00      .1686E+00 
      .2880E+01      .1000E+02     -.6000E-01      .1715E+00 
      .2880E+01      .1200E+02     -.3502E-01      .1603E+00 
      .2880E+01      .1400E+02     -.2690E-01      .1367E+00 
      .2880E+01      .1600E+02     -.2473E-01      .1009E+00 
      .2880E+01      .1800E+02     -.1764E-01      .5411E-01 
      .3168E+01      .0000E+00     -.8249E-02      .1562E-02 
      .3168E+01      .2000E+01     -.3194E+00      .4389E-01 
      .3168E+01      .4000E+01     -.2934E+00      .1054E+00 
      .3168E+01      .6000E+01     -.1878E+00      .1481E+00 
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where, 
<-1-> (E15.7): radial distance r   (m) 
<-2-> (E15.7): depth z   (m) 
<-3-> (E15.7): real part of displacement  (Vr  (IDR=1), Vθ  (IDR=2) or Vz  (IDR=3))  (m) 
<-4-> (E15.7): imaginary part of displacement (Vr  (IDR=1), Vθ  (IDR=2) or Vz  (IDR=3))  

(m) 
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5.  Numerical Examples  
Steel pile groups  
Steel piles (Table 5.1) grouped together beneath a rigid massless pile cap are embedded 
in a homogeneous soil deposit (Table 5.2) overlying a rigid bedrock. 
  

Table 5.1  Parameters for steel piles 
E p (tf/m2) ρp (t/m3) r0 (m) thickness (m) length (m) 
2.1×107 7 0.3 0.0089 20 

 
Table 5.2  Parameters for soil 

ρp (t/m3) vs (m/s) ν  thickness (m) 
1.5 80 0.49 20 

 
The soil deposit with the inclusion of piles is cut equally into 10 slices. Piles are 
arranged side by side in squares with equal interval of 2.5 times as large as the pile 
diameter. Two pile groups (2×2 and 3×3, Fig. 5.1) are discussed herein.  
 

s

d

 
Fig. 5.1 pile groups 

 
Prepared input data files 
(1) LAYER.dat 
   10 
    4.80e4    4.80e3    9.79e2    9.79e1     0.153       2.0 
    4.80e4    4.80e3    9.79e2    9.79e1     0.153       4.0 
    4.80e4    4.80e3    9.79e2    9.79e1     0.153       6.0 
    4.80e4    4.80e3    9.79e2    9.79e1     0.153       8.0 
    4.80e4    4.80e3    9.79e2    9.79e1     0.153      10.0 
    4.80e4    4.80e3    9.79e2    9.79e1     0.153      12.0 
    4.80e4    4.80e3    9.79e2    9.79e1     0.153      14.0 
    4.80e4    4.80e3    9.79e2    9.79e1     0.153      16.0 
    4.80e4    4.80e3    9.79e2    9.79e1     0.153      18.0 
    4.80e4    4.80e3    9.79e2    9.79e1     0.153      20.0 

(2) FREQ.dat 
   63   15       1.0       1.0 
(3) SDISP.dat 
    1    4   10     1.000     0.100 
(4) equi_stiff.dat (See next page).
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(5) ARRANGE.dat 
2×2 piles 
    4 
       0.0       0.0        
       1.5       0.0        
       0.0       1.5        
       1.5       1.5        

 

3×3 piles 
    9 
       0.0       0.0        
       1.5       0.0        
       3.0       0.0        
       0.0       1.5        
       1.5       1.5        
       3.0       1.5        
       0.0       3.0        
       1.5       3.0        
       3.0       3.0        

 
 
(6) PILEPRM.dat 
       0.3       0.291     2.1e7     0         0.801      
       0.3       0.291     2.1e7     0         0.801      
       0.3       0.291     2.1e7     0         0.801      
       0.3       0.291     2.1e7     0         0.801      
       0.3       0.291     2.1e7     0         0.801      
       0.3       0.291     2.1e7     0         0.801      
       0.3       0.291     2.1e7     0         0.801      
       0.3       0.291     2.1e7     0         0.801      
       0.3       0.291     2.1e7     0         0.801      
       0.3       0.291     2.1e7     0         0.801      

 
(4) equi_stiff.dat 
2×2 piles 
  .118E+01 
  .613E+05  .000E+00  .851E+06  .000E+00  .555E+00 
  .613E+05  .000E+00  .851E+06  .000E+00  .555E+00 
  .613E+05  .000E+00  .851E+06  .000E+00  .555E+00 
  .613E+05  .000E+00  .851E+06  .000E+00  .555E+00 
  .613E+05  .000E+00  .851E+06  .000E+00  .555E+00 
  .613E+05  .000E+00  .851E+06  .000E+00  .555E+00 
  .613E+05  .000E+00  .851E+06  .000E+00  .555E+00 
  .613E+05  .000E+00  .851E+06  .000E+00  .555E+00 
  .613E+05  .000E+00  .851E+06  .000E+00  .555E+00 
  .613E+05  .000E+00  .851E+06  .000E+00  .555E+00 

 
3×3 piles 
  .203E+01 
  .138E+06  .000E+00  .488E+07  .000E+00  .171E+01 
  .138E+06  .000E+00  .488E+07  .000E+00  .171E+01 
  .138E+06  .000E+00  .488E+07  .000E+00  .171E+01 
  .138E+06  .000E+00  .488E+07  .000E+00  .171E+01 
  .138E+06  .000E+00  .488E+07  .000E+00  .171E+01 
  .138E+06  .000E+00  .488E+07  .000E+00  .171E+01 
  .138E+06  .000E+00  .488E+07  .000E+00  .171E+01 
  .138E+06  .000E+00  .488E+07  .000E+00  .171E+01 
  .138E+06  .000E+00  .488E+07  .000E+00  .171E+01 
  .138E+06  .000E+00  .488E+07  .000E+00  .171E+01 
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5.1 Deflection of pile group caused by free-field ground motion (vib_mode.dat) 
 

Fig. 5.2a shows the real part of the soil response to sine shake given to its bottom end 
(bedrock); the motion is referred to as the “free-field ground motion”. The grouped piles 
(3×3) are flexible enough to follow closely the free-field ground motion in a low 
frequency range (Fig. 5.2b), but they become inflexible as the frequency increases and 
the motion of piles Vr

f s+  gradually deviates from the free-field ground displacement 
Vr

f .  
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Fig. 5.2  Free-field ground motion and pile deflection 

 
5.2 Kinematic displacement factors (eff_motion.dat) 

The effects of soil-pile group kinematic interaction evaluated at its pile cap are 
portrayed in the form of two kinematic displacement factors in sway and rocking 
motions 

 Te sway, =
V
V
r

f s

r
f

+

,   Te rocking, =
V
V

z
f s

r
f

+

   (5.1), (5.2) 

plotted as functions of frequency. 
Fig. 5.3 shows the kinematic displacement factors of the 3×3 pile group. This figure 

shows that the motion of the pile group is about identical to the free-field ground motion, 
and the kinematic interaction effect in a lower frequency range (ω < 20 ) case can be 
ignored. As the frequency increases, however, the pile cap gradually starts rocking.  
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Fig. 5.3 Kinematic displacement factors 
 
5.3 Pile deflection caused by a unit lateral force Px  applied to pile cap 
        (deflec_Px.dat) 
Deflection (( )Vr r R= 0

) of the 3×3 pile group subjected to a unit lateral force applied to 

its pile cap is show in Fig. 5.4 for different excitement frequency. The other data files 
“deflec_M.dat”, “deflec_Vx.dat” and “deflec_Vz.dat” store pile deflections caused by 
an unit moment, M Ry / 0 =1, unit displacements Vx =1 and Vz =1, respectively, applied 
to its pile cap. 
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Fig. 5.4  Pile deflection caused by a unit lateral force Px  
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5.4 Soil reactions to pile group caused by a unit lateral force Px  applied to pile 
cap (react_Px.dat) 
         
Soil reactions at laterally-sliced element boundaries to the 3×3 pile group subjected to 
a unit lateral force applied to its pile cap is show in Fig. 5.5 for different excitement 
frequency. The other data files “react_M.dat”, “react_Vx.dat” and “react_Vz.dat” 
store reaction forces from the soil surrounding a pile group subjected to an unit moment, 
M Ry / 0 =1, unit displacements Vr =1 and Vz =1, respectively, applied to its pile cap. 
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Fig. 5.5  Soil reactions to 3×3 pile group subjected to an unit lateral force given to 
  its pile cap 
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5.5 Pile cap stiffness (top_stf.dat) 
Fig. 5.6 shows the variations of pile cap stiffnesses for sway motions of 2×2 and 3×3 
steel pile groups. The curves for the equivalent single beams agree well with rigorous 
solutions from “TLEM” (Ver. 1.1). 
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Fig. 5.6  Variations of stiffness parameters for sway motions of pile groups 

 
 
5.6 Pile cap flexibility (top_flx.dat) 
Fig. 5.7 shows the variations of pile cap flexibilities for sway, coupling, rocking 
motions of the 3×3 steel pile group.  
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   Fig. 5.7  Pile cap flexibilities 
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5.7 Soil deformation (space_dsp.dat) 
Fig. 5.8 shows the spatial variation of soil displacement caused by a unit lateral force 
given to the pile cap of a 3×3 pile group. Directions of displacement component and 
the unit force or displacement given to the pile cap can be controlled by the following 
indexes in "SDISP.dat". 
<1> IDR : direction of displacement component (Vr  (IDR=1), Vθ  (IDR=2) or Vz  (IDR=3)) 

<2> KF :  direction of applied force or displacement 
                 KF=1: Lateral unit force is applied 
                 KF=2: Moment/R0 (=1.0) is applied 
                 KF=3: Lateral unit displacement is given keeping rotation zero 
                 KF=4: Unit rotation is given keeping lateral displacement zero  
<3> (I5): Number of stepwise increases of radial diatance 
<4> (F10.7): Initial value of radial distance r R/ 0  
<5> (F10.7): Increment of radial distance ∆r R/ 0  
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 (a) radial displacement (ID=1)  (b) tangential displacement (IDR=2) 

Fig. 5.8  Spatial variation of soil displacement (KF=1) 
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